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Twistor theory is used to develop a new procedure for inverting the Radon line
transform in three or more dimensions. First, the inversion problem is reduced to a
∂-problem on the complement of real projective space in complex projective space.
The ∂-problem in turn is solved by means of an explicit integral formula.
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1. Introduction

The three-dimensional Radon line transform problem (Helgason 1980; Radon 1917)
may be formulated as follows. Let F be a given density distribution on Euclidean
three space. If λ is a straight line in the space, denote by ρλ(F ) the integral of F
along the line λ, using the Euclidean measure along the line. The problem is then:
given ρλ(F ), for all lines λ, find the function F . This problem is routine to solve for
certain classes of functions F (for example, smooth functions of compact support)
using Fourier analysis. Here a new and deeper approach to the problem will be
sketched, using complex analysis and twistor theory (Penrose & Rindler 1984, 1986).

The twistor reformulation of the problem was described for the first time by the
author in lectures in Oxford in the late 1970s. The reason for the delay in solving it
is that the topology and analysis needed are quite subtle and the correct approach
only became clear recently. This reformulation will now be presented briefly. For any
integer n > 2, consider V , a real vector space of dimension n+1, V ′, the complement
of the origin in V and A, a real affine space of dimension n.
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3042 G. Sparling

Choose an affine embedding µ : A → V ′ of A in V ′, as a hyperplane in V , not
passing through the origin. Denote by C∞(V,−2) the space of smooth functions
globally defined on the space V ′ and homogeneous of degree minus two, i.e. if f ∈
C∞(V,−2), then t2f(tv) = f(v), for all v ∈ V ′ and all non-zero real numbers t.

A real-valued function F defined on the space A will be said to be regular at
infinity if and only if F = fµ, for some (necessarily unique) function f ∈ C∞(V,−2).
Denote by G∞(A) the space of functions F on A that are regular at infinity. The
space G∞(A) is a subspace of the space of all smooth functions on the space A and
is independent of the choice of the embedding µ.

Denote by T (A) = A×B the tangent bundle of A (where B is a real vector space
of dimension n) and by S(A) the complement of the zero section in T (A). For any
x ∈ A, y ∈ A and v ∈ B, we shall write y−x ∈ B for the position vector of y relative
to x and x+v ∈ A for the point of A whose position vector relative to x is the vector
v. The derivative of the map µ is a real linear map µ∗ : B → V , with image the
hyperplane through the origin of the space V , parallel to the hyperplane µ(A).

Asymptotically, we have the limit: limt→∞ t2F (x+ tz) = f(µ∗(z)), for any (x, z) ∈
S(A) and for any F ∈ G∞(A), where F = fµ. In particular, for any given F ∈
G∞(A), the following improper integral converges, defining a function ρ(F ) on the
space S(A):

ρ(F )(x, z) ≡ π−1
∫ ∞
−∞

F (x+ tz) dt.

The Radon transform problem for F ∈ G∞(A), is then: given the function ρ(F ),
retrieve the function F . Note that the quantity ρ(F ) is essentially homogeneous of
degree minus one in z, in that we have the relation |k|ρ(F )(x, kz) = ρ(F )(x, z), for all
(x, z) ∈ S(A) and for all real k 6= 0. Consequently, if the bundle T (A) is provided with
an Euclidean structure, knowledge of the function ρ(F ) is equivalent to knowledge
of its restriction to the subset of S(A) consisting of all (x, z) ∈ S(A), such that z is
a unit vector. In turn the quantity ρ(F )(x, z), for z a unit vector, is a fixed constant
multiple of the ordinary line integral of the function F , with respect to Euclidean
measure, along the line in the space A through the point x with direction vector z.
So knowledge of the function ρ(F ), for each F ∈ G∞(A), is equivalent to knowledge
of the ordinary Radon transform for G∞(A) in the Euclidean case. Note, however,
that the quantity ρ(F ) does not need an Euclidean structure for its definition.

A prototypical example is the case F = Fa,b, where Fa,b(x) ≡ [(x−a)·(x−a)+b2]−1,
for any x ∈ A, any fixed a ∈ A and any fixed non-zero real number b. Here u · v (for
any u ∈ B and v ∈ B) is an Euclidean inner product for the vector space B.

One finds that ρ(Fa,b)(x, z) = [z · z((x− a) · (x− a) + b2)− (z · (x− a))2]−1/2, for
any (x, z) ∈ S(A).

Next denote by ∆(V ) the space of all pairs (v, w) ∈ V 2, with v and w linearly
independent. Consider the following integral, for any given f ∈ C∞(V,−2) and for
any (v, w) ∈ ∆(V ):

φ(f)(v, w) ≡ π−1
∫ π/2

−π/2
f(v cos θ + w sin θ) dθ = (2π)−1

∫ π

−π
f(v cos θ + w sin θ) dθ.

Putting z ≡ v cos θ + w sin θ, we have the following identities, valid for any real θ
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Inversion for the Radon line transform 3043

and any (v, w) ∈ ∆(V ):
∂θ[− sin2 θf(z)] = v · ∂wf(z),

∂θ[cos2 θf(z)] = w · ∂vf(z),
∂θ[− sin θ cos θf(z)] = v · ∂vf(z) + f(z),
∂θ[sin θ cos θf(z)] = w · ∂wf(z) + f(z).

Here ∂θ is the partial derivative with respect to θ and for any vector variables a and
b, the operator a · ∂b is the directional derivative in the direction of a, with respect
to the variable b. Integrating these identities immediately gives the relations, valid
for all f ∈ C∞(V,−2):

v · ∂wφ(f) = w · ∂vφ(f) = v · ∂vφ(f) + φ(f) = w · ∂wφ(f) + φ(f) = 0.
We also have φ(f)(−v, w) = φ(f)(w, v) = φ(f)(v, w), for all (v, w) ∈ ∆(V ). Combin-
ing these relations, we obtain the formula, valid for any real numbers a, b, c and d,
such that ad− bc 6= 0 and for any (v, w) ∈ ∆(V ):

φ(f)(av + bw, cv + dw) = |ad− bc|−1φ(f)(v, w).
Next define on the space ∆(V ), a function Φ(f), taking values in Ω2(V ), the exterior
product of V with itself, by: Φ(f)(v, w) ≡ v ∧ wφ(f)(v, w), for any (v, w) ∈ ∆(V ).
Then the function Φ(f) obeys the following relations, valid for any real numbers a,
b, c and d, such that ad− bc > 0 and for all (v, w) ∈ ∆(V ):

Φ(f)(v, w) = −Φ(f)(−v, w) = −Φ(f)(w, v),
Φ(f)(av + bw, cv + dw) = Φ(f)(v, w).

Thus the quantity Φ(f)(v, w) depends only on the oriented two plane in the space V ,
through the points v and w, with oriented basis (v, w). Denote by M(V ) the oriented
Grassmanian of oriented two planes in the vector space V . Then the function Φ(f)
may be interpreted as the pullback to the space ∆(V ) of a smooth function, still
called Φ(f), taking values in Ω2(V ), defined globally on the space M(V ). Note that
if x ∈M(V ) and y ∈M(V ), with x = y as subspaces of V , but with x and y having
the opposite orientations, then we have Φ(f)(x) = −Φ(f)(y), for all f ∈ C∞(V,−2).

Finally, if F = fµ, for f ∈ C∞(V,−2) and for F ∈ G∞(A), then we have the
following relation, valid for all (x, z) ∈ S(A):

φ(f)(µ(x), µ(x+ z)) = ρ(F )(x, z).
So, knowledge of the function φ(f) on the space ∆(V ) is equivalent to knowledge of
the function ρ(f) on the space S(A), whenever F = fµ. In turn, knowledge of the
function φ(f) on the space ∆(V ) is equivalent to knowledge of the function Φ(f) on
the space M(V ). So, solving the Radon transform problem for the function space
G∞(A) is equivalent to solving the transform problem:

Given the Ω2(V )-valued function Φ(f) on the space M(V ), for f ∈ C∞(V,−2),
reconstruct the function f .

It is in this form that we shall analyse the problem. We shall treat not just the stan-
dard three-dimensional Radon transform, for which n = 3, but the generalization,
for which n > 3.

The prototypical example in this language is the case f = fg, where fg(v) ≡
[g(v, v)]−1, for any v ∈ V ′. Here the quantity g(·, ·), represents a definite symmetric
bilinear inner form for the space V . For this example we have, for any (v, w) ∈ ∆(V ):

φ(fg)(v, w) = [g(v, v)g(w,w)− g(v, w)2]−1/2.
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3044 G. Sparling

Pick a unit vector α ∈ V and an affine embedding µ of A onto the hyperplane with
equation g(α, v) = b 6= 0 in V . Then we have the relation fgµ = Fa,b, provided
µ(a) = bα, where we use the induced metric for the Euclidean structure of the space
A. Then the prototypical examples fg and Fa,b are compatible, as is easily seen.

Section 2 below organizes the real and complex geometry underlying the Radon
transform. The most important spaces are the spaces V ′, M(V ) and H(V ), the space
of all complex vectors a + ib, with a and b linearly independent vectors in V . The
space H(V ) maps to the space M(V ), in two ways: one assigns to each vector a+ ib
in H(V ) the oriented subspace with oriented base (a, b); the other assigns to each
vector a+ ib in the space H(V ) the oriented subspace with oriented basis (b, a).

Section 3 introduces the differential operator, E, which generates the action of the
general linear group of the space V on a variety of associated spaces and discusses
applications of Liouville’s theorem.

Section 4 gives a precision treatment of the basic Radon transform formula. The
transform is described there as a linear operator Φ : C∞(V,−2) → Z(M), where
Z(M) is a space of smooth functions on the space M(V ), taking values in Ω2(V ),
subject to a certain system of second-order differential equations. It is shown that
these equations, when pulled back to the space H(V ), amount to exactly the con-
dition that for each f ∈ C∞(V,−2), a certain (0, 1)-form on the space H(V ), con-
structed from the transform Φ(f), be ∂-closed. This provides the entry for a complex
analytic approach to an otherwise real problem.

Section 5 gives a description of the Hilbert transform, HX , as a complex structure
for the space of smooth functions, homogeneous of degree minus one, defined on
the complement of the origin in an oriented two-dimensional real vector space X.
Complex analysis enters here, again, since the (complex) eigenvectors of the operator
HX admit holomorphic extensions into certain domains in the complexification of
the space X.

Section 6 gives a cohomology vanishing theorem, showing the vanishing of the
first cohomology group, of the sheaf Θ(−2) of germs of sections of the line bundle
of Chern class minus two, over the complement of real projective space in complex
projective space. This is relevant, since the projective image, pC(H), of the space
H(V ) is exactly the complement of the projective space of V inside the complex
projective space of the complexification of V .

Section 7 shows how to solve the problem ∂α = β, where ∂ is the ∂-operator for
complex projective space and β is a ∂-exact (0, 1) form with coefficients in Θ(−2),
defined on certain domains in projective space. The method used is a global version
of the method of Grothendieck. This section gives in particular the solution for the
domain pC(H) in terms of explicit integrals involving the form β.

Section 8 shows how to use the Hilbert transform to get at the Radon transform.
In particular, it is shown that the Radon transform Φ is injective.

Section 9 shows how to use the information gathered in §§ 4–8 to solve completely
the inversion problem for the Radon transform. Roughly, the procedure followed is to
organize the information of the transform Φ(f), for any f ∈ C∞(V,−2), in a ∂-closed
(0, 1) form, β(f), on the space H(V ), to prove exactness of the form β(f), to solve
the equation ∂α(f) = β(f), with an explicit construction of the (unique) solution
α(f) and then to show how to reconstruct the function f from the quantity α(f).

It should be noted that the entire construction is carried out without being able
to conclusively identify the range of the transform Φ. It is natural to conjecture,
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Inversion for the Radon line transform 3045

however, that the range is the whole space Z(M). Fritz John (1938) wrote a beautiful
treatment of the Radon transform for continuous data. Much of his work can be taken
over into the present language. It is hoped that by carefully studying his paper it
may become possible to settle this conjecture.

This work may be regarded as the third of a series devoted to analysing the relation
between twistor theory and soliton theory; the first two works were co-authored with
Lionel Mason (Mason & Sparling 1989, 1992). In the language of twistor theory, the
present work (specialized to the case that V is four dimensional) deals only with linear
spin zero fields obeying the conformally invariant wave equation on the conformally
flat manifold M(V ), of signature (2, 2). However, the global approach used here is
easily seen to be compatible with the standard local twistor generalizations from spin
zero to other spins and from linear field theory to (anti)-self-dual connection theory
(gauge connections and Cartan conformal connections). This approach then dovetails
in nicely with the elegant approach to global soliton theory developed independently
by Mason, using non-Hausdorff spaces. Mason’s theory was introduced in a seminar
by him at the University of Pittsburgh, while the present paper was being written
up.

A technical difference is that the author’s work considers the smooth theory,
whereas Mason’s spaces encode most naturally the analytic case. However, it should
be remarked that in the nonlinear theory the analysis is far more difficult, so theorems
in the present theory have to be replaced (temporarily, one hopes!) by conjectures in
the nonlinear case. It is planned to give a fuller discussion of these matters elsewhere.

In the special case that the vector space V is four dimensional, this work gives an
alternative to the standard theories of three-dimensional imaging, where the image
is to be reconstructed from the observed absorption of linearly propagating probes
(sonar, X-rays (Röentgen 1895), neutrino beams, etc.). It is possible that the present
approach is superior to the conventional approach. This is currently under investi-
gation.

2. Geometrical organization

Denote by R, C and R+, respectively, the real and complex fields and the multiplica-
tive group of positive reals. For any t ∈ C, t will denote its complex conjugate.

For any real vector space V , of finite dimension d(V ) > 2, we introduce the fol-
lowing associated entities:

1. VC: the complexification of V . If v ∈ VC, we write v ∈ VC for its complex
conjugate and v+ ∈ V and v− ∈ V for its real and imaginary parts, respectively:
so v = v+ + iv− and v = v+ − iv−.

2. V ∗, V ∗C : the real dual of V and the complex dual of VC.

3. V ′, V ′C: the spaces V and VC with their origins removed.

4. T (V ): the real tensor algebra of V , generated by R, V and V ∗.

5. T pq (V ): the tensor product of p copies of V with q copies of V ∗, for p and q
non-negative integers.

6. T+(V ), T−(V ): the subalgebras of T (V ) generated by R and V and by R and
V ∗, respectively.

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


3046 G. Sparling

7. T (VC): the complex tensor algebra of VC, generated by C, VC and V ∗C .

8. T pq (VC): the tensor product of p copies of VC with q copies of V ∗C , for p and q
non-negative integers.

9. T+(VC), T−(VC): the subalgebras of T (VC) generated by C and VC and by C
and V ∗C , respectively.

10. P (V ), PC(V ): the real projective space of V and the complex projective space
of VC.

11. Ω(V ), Ω(VC): the real exterior algebra of V and the complex exterior algebra
of VC, respectively.

12. Ωp(V ), Ωp(VC): the p-fold exterior powers of V and VC, respectively, for any
non-negative integer p.

We use ∧ to denote the exterior products of the algebras Ω(V ) and Ω(VC), not for
the exterior product for differential forms; instead this latter product is written as
juxtaposition of the terms in the product. For any given a ∈ V ∗, α ∈ Ω(V ), b ∈ V ∗C ,
β ∈ Ω(VC), denote by ι(a)α ∈ Ω(V ) and ι(b)β ∈ Ω(VC), respectively, the images of
α and β under the natural actions of a and b as derivations of Ω(V ) and Ω(VC) of
degree minus one. We occasionally identify Ω1(V ) and V , without comment.

1. M(V ): the space of oriented two-dimensional real subspaces of V .

2. N(V ): the space of all X ∈ Ω2(V ), such that 0 6= X and X ∧X = 0.

3. ∆(V ): the space of all (v, w) ∈ V 2, such that v ∧ w 6= 0.

4. H(V ): the space of all v ∈ VC, such that v ∧ v 6= 0.

5. S(V ): the space of all pairs (x, v), with x ∈M(V ) and v ∈ x′.

6. SC(V ): the space of all pairs (x, v), with x ∈M(V ), v ∈ V ′C, v+ ∈ x and v− ∈ x.

7. S+(V ): the space of all (x, v) ∈ SC(V ), such that (v+, v−) is an oriented basis
of x.

8. S−(V ): the space of all (x, v) ∈ SC(V ), such that (v+,−v−) is an oriented basis
of x.

9. S0(V ): the space of all (x, v) ∈ SC(V ), such that v ∧ v = 0.

Note that the space SC(V ) is the disjoint union of the spaces S+(V ), S−(V ) and
S0(V ) and the space S0(V ) is the boundary in SC(V ) of each of the spaces S+(V )
and S−(V ). The space S(V ) is a subspace of the space S0(V ) and if (x, v) is a given
point of S0(V ), then there exists a point (x,w) of S(V ), such that v = tw, for some
t ∈ C with tt = 1 and then the vector w is unique up to sign.

We also introduce the following maps.
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1. The natural skew symmetrization maps:

∧+(V ) : T (V )→ T−(V )⊗Ω(V ),

∧+(VC) : T (VC)→ T−(VC)⊗Ω(VC),

∧−(V ) : T (V )→ T+(V )⊗Ω(V ∗),

∧−(VC) : T (VC)→ T+(VC)⊗Ω(V ∗C ),
∧(V ) : T (V )→ Ω(V )⊗Ω(V ∗),
∧(VC) : T (VC)→ Ω(VC)⊗Ω(V ∗C ).

2. The canonical projections:

p(V ) : V ′ → P (V ),

pC(V ) : V ′C → PC(V ).

3. m(V ) : N(V ) → M(V ), the canonical surjection, which assigns to any given
X ∈ N(V ) the oriented subspace of V , m(V )(X) ∈M(V ), with oriented basis
the ordered pair of vectors (v, w) of V , whenever we have v ∧ w = X.

4. n(V ) : ∆(V )→ N(V ), (v, w) ∈ ∆(V )→ n(V )(v, w) ≡ v ∧ w ∈ N(V ).

5. X+(V ) : H(V )→ N(V ), v ∈ H(V )→ X+(V )(v) ≡ 2v+ ∧ v− ∈ N(V ).

6. X−(V ) : H(V )→ N(V ), v ∈ H(V )→ X−(V )(v) ≡ −2v+ ∧ v− ∈ N(V ).

7. x+(V ) : H(V )→M(V ), the composition m(V )X+(V ).

8. x−(V ) : H(V )→M(V ), the composition m(V )X−(V ).

9. s+(V ) : H(V )→ S+(V ), v ∈ H(V )→ s+(V )(v) ≡ (x+(V )(v), v) ∈ S+(V ).

10. s−(V ) : H(V )→ S−(V ), v ∈ H(V )→ s−(V )(v) ≡ (x−(V )(v), v) ∈ S−(V ).

As a subspace of V , we have m(V )(X) = {v ∈ V ; v ∧X = 0}, for any X ∈ N(V ).
Then we have m(V )(X) = m(V )(Y ), for X ∈ N(V ) and Y ∈ N(V ), if and only if
there exists a unique r ∈ R+, with X = rY . The map m(V ) makes N(V ) into a
principal fibre bundle over the space M(V ) with fibre R+.

If the underlying vector space V is understood, we shall abbreviate, when it is
convenient to do so, by omitting (V ) from the names of the various spaces and maps
introduced above and by replacing (VC) and (V ∗C ) by just C and ∗C, respectively.

Lemma 2.1. The maps s+ and s− are diffeomorphisms, so provide the spaces S+
and S−, respectively, with complex structures.

Proof . The maps s+ and s− are clearly smooth and are easily seen to be injective
and surjective. �

If W is a subspace of V , denote by ann(W ) the subspace of V ∗ consisting of all
linear forms on V that annihilate the subspace W . For any W , a subspace of V ,
denote by σ(W ) the subalgebra of the algebra T generated by the spaces R, W and
ann(W ) and by σpq (W ) the intersection of the spaces σ(W ) and T pq , for any p and q
non-negative integers.
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By definition, the twistor algebra over the space M , τ(M) is the trivial tensor
algebra bundle M × T .

By definition, the spinor algebra over the space M , σ(M), is the algebra subbundle
of the twistor algebra over M , whose fibre at any point x ∈ M is the algebra σ(x).
A section of the twistor algebra that takes values in σ(M) will be called local, or a
spinor field. For any p and q non-negative integers, denote by σpq the bundle over M ,
whose fibre at any x ∈M is the space σpq (x). For any p and q non-negative integers,
a spinor field which is a section of σpq will be said to be of type (p, q) or to have p
primed indices and q unprimed indices.

Note that the space S(V ) introduced above is the complement of the zero section
of the primed spin bundle σ1

0 .
Some quantities are most easily expressed using indices. We shall use Greek lower-

case indices for the tensor algebras of V and VC, generally conforming to the abstract
index conventions of Penrose & Rindler (1984).

3. Canonical differential operators; derivations; homogeneous
functions; fibre holomorphic functions; Liouville’s theorem

We work in the smooth category throughout. Denote by d the exterior derivative
operator, for any space. Denote by ∂ the ∂-bar operator for any complex manifold.
One has d = ∂ + ∂, where ∂ is the complex conjugate of ∂.

For any vector field ρ, denote by ι(ρ) the corresponding derivation of forms of
degree minus one and by L(ρ) the Lie derivative derivation of forms, in the direction
of ρ. One has the relation L(ρ) = dι(ρ) + ι(ρ) d.

Denote by z the tautological V -valued function on V , whose value at any v ∈ V is
just v. The function z may be used as a (vector) coordinate function for V . Denote by
∂z the V ∗ valued vector field on V , such that (∂z)(z) = δ, where δ is the Kronecker
delta tensor.

Denote by ζ (with complex conjugate ζ) the tautological VC-valued function on VC,
whose value at any v ∈ VC is v. The function ζ may be used as a (vector) holomorphic
coordinate function for VC. Denote by ∂ζ (with complex conjugate ∂ζ) the V ∗C valued
vector field on VC, such that (∂ζ)(ζ) = δ and (∂ζ)(ζ) = 0.

If t ∈ R, denote by Γ (t) the diffeomorphism Γ (t) : V ′ → V ′, v → etv, for all
v ∈ V ′. The set Γ ≡ {Γ (t); t ∈ R} forms a one-parameter group of diffeomor-
phisms of V ′. Denote by η the vector field generating Γ . Explicitly, we have the
relation η(f) = ι(z)(∂z(f)), for any smooth function f on V ′ (not necessarily glob-
ally defined). A quantity defined on V ′ will be said to be homogeneous of (integral)
degree k, if and only if, for each real t, it scales by a factor of etk, under the action
of the diffeomorphism Γ (t). Similar definitions apply to functions defined on open
subsets of V ′ that are invariant under the action of the group Γ . For any integer k,
denote by C∞(V, k) the space of all smooth functions f , globally defined on V ′ and
homogeneous of degree k, such that f(−v) = (−1)kf(v), for all v ∈ V ′.

For each complex t, denote by ΓC(t) the diffeomorphism ΓC(t) : V ′C → V ′C, v → etv,
for all v ∈ V ′C. Then the set ΓC ≡ {ΓC(t); t ∈ C} forms a one-parameter group of
holomorphic diffeomorphisms of V ′C. A quantity defined on the space V ′ will be said
to be homogeneous of (integral) degrees (p, q), if and only if, for each complex t,
it scales by a factor of exp(tp + tq), under the action of ΓC(t). If the quantity is
holomorphic and homogeneous of degree (p, q), then necessarily q = 0. In that case
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we shall say that the quantity is homogeneous of degree p. Similar definitions apply
to functions defined on open subsets of V ′C that are invariant under the action of ΓC.

Denote by G the Lie group of isomorphisms of V and by g the Lie algebra of G.
Then the group G acts naturally as a group of diffeomorphisms on each of the spaces
V , V ∗, Ω2, Ω2 × VC, VC, P , PC, M , N , H, S, SC, S± and S0. Correspondingly the
Lie algebra g is naturally represented on each of these spaces by a global g∗-valued
vector field. Denote this vector field, for any of these spaces by E. Note that both
g and g∗ may be canonically identified with V ⊗ V ∗, so that E may be regarded as
taking values in V ⊗ V ∗. Explicit formulas for E follow.

1. On the space V , we have E = z ⊗ ∂z.
2. On the space VC, we have E = ζ ⊗ ∂ζ + ζ ⊗ ∂ζ .

3. A point of the space Ω2 is represented canonically by a skew coordinate vector
Xαβ. Then the equations of the subspace N are: Xαβ 6= 0 and X [αβXγδ] = 0.
Denote by ∂αβ the indexed vector field on the space Ω2, which satisfies the
equations ∂αβXγδ = δγ[αδ

δ
β]. Then on the space Ω2, we have the formula Eαβ =

2Xαγ∂βγ . The vector field E of the space Ω2 is tangent to the submanifold
N , inducing the vector field E of the space N . The vector field E is invariant
under the action of the group R+ on the space N , so passes down to the space
M , giving the vector field E of that space.

4. On the space Ω2 × VC, the vector field E is given by the formula Eβα =
2Xβγ∂αγ + ζβ∂α + ζβ∂α, where ∂α ≡ (∂ζ)α and ∂α ≡ (∂ζ)α. This vector field
restricts naturally to the space N × VC, passes down to the quotient M × VC
and is tangent to the submanifold SC of the space M × VC.

The fibre of the space SC at any point x ∈ M is by definition the set of all
points (x, v) ∈ SC, with v ∈ V ′C and v± ∈ x. If f is a function defined on an open
subset of the space SC, then f will be said to be fibre holomorphic if and only if the
restriction of f to any fibre is holomorphic with respect to the complex structure on
the fibre induced from the complex structure of V ′C. Expressed in terms of differential
equations on the space N × VC, the function f is fibre holomorphic if and only if it
obeys the relations: ζα∂αf = ζ

α
∂αf = Xαβ∂αβf = 0.

The vector field E on the space M is local, taking values in the bundle σ1
1 . Then

the map α → σ(α) ≡ ι(E)(α), for any α a section of the cotangent bundle of M ,
gives a natural isomorphism of the cotangent bundle of M , which is a 2(d(V ) − 2)-
dimensional bundle over M , with the bundle σ1

1 , which has the same dimension. A
metric or conformal structure γ on the space M , will be said to be of spinor type,
if and only if the inner products γ(Eρα, E

σ
β ) are totally skew. In the case that the

vector space V is four dimensional, it is well known that there is a unique conformal
structure γ, of spinor type, for the space M . Distinct points x and y of the space M
are connected by a unique null geodesic of that conformal structure, if and only if
the intersection of the subspaces x and y of V is exactly one dimensional.

If ω is a differential k-form on M , for k a non-negative integer, then ω may be
represented as a spinor by the quantity σ(ω) ≡ (k!)−1((ι(E)⊗)k(ω). The quantity
σ(ω) is a (k, k) spinor field, such that it changes sign whenever pairs of corresponding
contravariant and covariant indices are simultaneously interchanged. Conversely, any
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such (k, k) spinor field represents a unique k-form on M . In particular, if ω is a
two form on M , it is represented by a (2, 2) spinor. There is then a canonical two
form ω∗, called the dual of ω, which is represented by the spinor σ(ω) with its
contravariant indices interchanged. One has (ω∗)∗ = w, for any two form w. The
two form ω is said to be self-dual if and only if ω = ω∗ and anti-self-dual if and
only if ω = −ω∗. The bundle of two forms of the space M , which has dimension
(d(V ) − 2)(2d(V ) − 5), is the direct sum of the bundles of self-dual two forms, of
dimension 3(d(V )−2)(d(V )−3)/2 and the bundle of anti-self-dual two forms, which
has dimension (d(V )− 2)(d(V )− 1)/2.

Next denote by δ the degree zero derivation of the algebra W , taking values in
V ⊗ V ∗, representing the natural action of the Lie algebra g on the algebra Ω. We
have the explicit formula: [(ι(a)δ)(b)](ω) = b ∧ (ι(a)(ω)), for any a ∈ V ∗, b ∈ V and
ω ∈ Ω. Also denote by δC the degree zero derivation of ΩC, taking values in VC⊗V ∗C ,
given by the analogous formula: [(ι(e)δC)(f)](ω) = f ∧ (ι(e)(ω)), for any e ∈ V ∗C ,
f ∈ VC and ω ∈ ΩC. Note that acting on the spaces Ω1 and Ω1

C, respectively, the
derivations δ and δC agree with the action of the real and complex Kronecker delta
tensors, respectively.

We shall frequently use variants of Liouville’s theorem. The simplest version needed
here is as follows. Let D0 denote a circle on the Riemann sphere, S, and let D±
denote open discs, each with boundary D0, such that the union of D± and D0 is
the whole sphere. Let f± be holomorphic functions on D± that each possess smooth
extensions to the closure of their respective domains. Suppose that the restrictions
to D0 of the extensions of f± are equal. Then the functions f± are each everywhere
constant, with the same constant value. This result follows because the conditions
on the functions f± guarantee (via the Cauchy–Riemann equations) the existence
of a global holomorphic function f on S, whose restrictions to the discs D± are the
given functions f±. But by the standard Liouville theorem, such a function f must be
constant, as required. We also need a ‘twisted’ version of this result. For any integer
k, let ΘS(k) denote the sheaf of germs of holomorphic sections of the holomorphic
line bundle over S of Chern class k (so the Hopf bundle corresponds the case k =
−1). Let s± be holomorphic sections of ΘS(k) on D±, that each possess smooth
extensions to the closure of their respective domains. Suppose that the restrictions
to D0 of the extensions of the sections s± are equal. Then if k < 0, the sections are
everywhere zero. This result follows from the untwisted case. First, the conditions on
the sections s± guarantee the existence of a global holomorphic section s of ΘS(k),
whose restrictions to the subsets D± are the given sections s±. Second, if k < 0,
for any global section t of ΘS(1), the product t−ks represents a global holomorphic
function on S, so is a constant, c, say, by the standard Liouville’s theorem. But it is
well known that any global section of ΘS(1) vanishes at exactly one point of S, so t
vanishes at a unique point p(t) of S. Evaluating the product t−ks at p(t) shows that
the constant c vanishes. Then evaluating the product at any p ∈ S, with p 6= p(t)
gives s(p) = 0. So the section s vanishes everywhere on the space S, except possibly
at the point p(t). Then by continuity, the section s vanishes everywhere on the space
S, as required.

One may cast these facts in the concrete language of homogeneous functions as fol-
lows. Let x be an oriented two-dimensional real vector space. Denote byD±(x) the set
of all v ∈ x′C, such that v+,±v− is an oriented basis of x. Denote by D0(x) the com-
mon boundary of the spaces D±(x) in the space x′C. So D0(x) = {v ∈ x′C; v∧ v = 0}.
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Let f± be smooth functions defined on the closures ofD±(x) in x′C and holomorphic
on D±(x). Suppose that the restrictions of f± agree on the boundary D0(x). Suppose
also that the functions f± are everywhere homogeneous of degree k, for some integer
k. Then if k < 0, the functions f± vanish identically and if k = 0, the functions f±
are everywhere the same constant.

4. The Radon transform formula

Denote by θ the Ω1-valued one form on V , such that for any fixed a ∈ V ∗, we have:
ι(a)(θ) = d(ι(a)(z)). We may trivially extend the exterior derivative of V to act on
forms on V , with values in the algebras T or Ω. Then we have θ = dz. Now the two
form θ2 takes values in Ω2. Denote by ω the one form 1

2 ι(η)(θ2). Then ω is a globally
defined one form, homogeneous of degree two on the space V and taking values in
the space Ω2. Explicitly we have the relation ω = z ∧ θ. Note that the form ω has
exterior derivative dω = θ2.

For any x ∈ M denote by x∗ the pullback map, restricting forms on V (not
necessarily globally defined) to the subspace x. If v ∈ x ∈M , then v∧x∗(w) = 0 and
v ∧ x∗(θ2) = 0. In particular, we have: x∗(z ∧ θ2) = 0, for all x ∈M . Let a function
f ∈ C∞(V,−2) be given. Then the product fw is a one form, globally defined on V ′
and homogeneous of degree zero, taking values in the space Ω2.

Lemma 4.1. The exterior derivative of the form fω is given by the following
formula:

d(fw) = −1
2(ι(∂zf)(z ∧ θ2)).

Proof . We have, using the relations L(η)θ = θ , L(η)f = −2f and dθ = 0:

2d(fω) = d(fι(η)(θ2)) = dι(η)(fθ2) = −ι(η)d(fθ2) + L(η)(fθ2)

= −ι(η)[(df)(θ2)] = −ι(η)[(ι(∂zf)(θ))(θ2)]

= −1
3 ι(η)[ι(∂zf)(θ3)] = −ι(∂zf)(z ∧ θ2),

as required. �

Corollary 4.2. For all x ∈M , the form x∗(fω) is closed.

Proof . We have

2d[x∗(fω)] = 2x∗(d(fω)) = −x∗(ι(∂zf)(z ∧ θ2)) = 0,

since x∗(z ∧ θ2) = 0. �

By corollary 4.2, the one form x∗(fω) defines an element of the cohomology class
H1(x′, Ω2). This element will be denoted by [x∗(fω)]. Note that for any v ∈ x ∈M ,
we have v ∧ [x∗(fω)] = 0, since v ∧ x∗(w) = 0.

Now if X is any oriented two-dimensional vector space, since X ′ is homotopic
to an oriented circle, the cohomology group H1(X ′, A) is canonically isomorphic to
A, for any abelian group of (constant) coefficients A. Denote by

∫
X

the canonical
isomorphism

∫
X

: H1(X ′, A)→ A, for any A.
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Definition 4.3. The Radon transform of any function f ∈ C∞(V,−2) is the
function Φ(f) ∈ C∞(M,Ω2), defined by the following formula, for any x ∈M :

Φ(f)(x) ≡ (2π)−1
∫
x

[x∗(fω)]. (4.1)

The Radon transform is the linear operator Φ : C∞(V,−2) → C∞(M,Ω2), taking
each f ∈ C∞(V,−2) to its Radon transform Φ(f).

The standard twistor Radon problem may now be stated succinctly as follows: if
the space V has dimension four:

1. determine the range of the operator Φ,

2. show that the operator Φ is an isomorphism onto its range, and

3. find an explicit inverse for Φ.

In this work parts 2 and 3 of this problem are solved, but not part 1. We allow the
space V to have any finite dimension greater than three.

We may write out equation (4.1) more explicitly, as follows: if we pull back the
function Φ(f) along the map mn, to the space ∆, then the function Φ(f) becomes
a function of a pair of vector variables (v, w), with v ∈ V , w ∈ V , v ∧ w 6= 0
and x = mn(v, w). Then the circle of points of x′, given by v cos θ + w sin θ, with
θ ∈ [−π, π], with its natural orientation, represents the positive generator of the first
integral homology group of the space x′. The pullback of the form x∗(w) to this circle
is the form v ∧ w dθ. Then equation (4.1) gives the following formula:

Φ(f)(v, w) = (2π)−1v ∧ w
∫ π

−π
f(v cos θ + w sin θ) dθ. (4.2)

So the function Φ(f) defined by formula (4.1) exactly agrees with the function Φ(f)
as discussed in the introduction.

Now the function Φ(f) obeys a second-order differential equation. To see this, first
extend the vector field E to act on C∞(M,Ω2), by requiring that E act trivially on
Ω2. Direct calculation gives E(Φ(f)) = Φ(E(f)) + δ(Φ(f)). Note that the operator
E preserves homogeneity, so maps the space C∞(V,−2) to the space V ⊗ V ∗ ⊗
C∞(V,−2). Extend the derivation d to act on the space Ω ⊗ T , by giving it the
trivial action on the algebra T . Also put F ≡ E − δ, so that we now have the
equation F (Φ(f)) = Φ(E(f)), for any f ∈ C∞(V,−2).

Now the quantity F (Φ(f)) is a smooth function on M taking values in the space
T 1

1 ⊗Ω2, so also may be regarded as a function taking values in the space T 3
1 , skew

in its last two indices. Denote by ∧F (Φ(f)) ∈ C∞(M,Ω1(V ∗)⊗Ω3) the composition
of the function F (Φ(f)) ∈ C∞(M,T ) with the skew symmetrization map ∧.

Lemma 4.4. For any f ∈ C∞(V,−2), we have the following identity:
∧F (Φ(f)) = 0. (4.3)

Proof . At any x ∈M , we have

∧F (4πΦ(f))(x) = ∧(4πΦ(E(f))(x) = ∧
(∫

x

[2x∗(E(f)ω)]
)

= ∧
(∫

x

[x∗(∂zf)⊗ z ⊗ (z ⊗ θ − θ ⊗ z)]
)

= 0.

Here we have used the relation ∧(z ⊗ (z ⊗ θ − θ ⊗ z)) = 2z ∧ z ∧ θ = 0. �
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Equation (4.3) amounts to a kinematic equation (see the remarks after equation
(4.9) below). We need to work harder to get the required field equation.

Denote the operation of interchanging the pth and qth indices of a tensor by Spq,
for contravariant indices and by Spq for covariant indices. Now, on quantities defined
on the space V , the second-order differential operator E ⊗ E acts as the operator
E⊗E = z⊗∂z⊗z⊗∂z = z⊗δ⊗∂z+z⊗z⊗∂z⊗∂z. Then, applying S12 to both sides
of this formula, we get: S12(E⊗E) = δ⊗z⊗∂z+z⊗z⊗∂z⊗∂z = δ⊗E+z⊗z⊗∂z⊗∂z.
In particular, we see from this relation that the operator S12(E ⊗ E) − δ ⊗ E is
totally symmetric. Thus the field Φ(f) obeys the field equation that the quantity
[S12(F ⊗ F )− δ ⊗ F ]Φ(f), regarded as taking values in the space T 2

2 ⊗Ω2 is totally
symmetric in its tensor arguments.

Denote by U(Φ) the quantity [S12(F ⊗ F ) − δ ⊗ F ]Φ(f), regarded as a function
on M , taking values in the space T 2

2 ⊗Ω2. Then we have the decomposition U(Φ) =
U1

1 (Φ) + U1
−1(Φ) + U−1

1 (Φ) + U−1
−1 (Φ), where the quantities Upq (Φ), for p2 = q2 = 1

obey the relations S12(Upq (Φ)) = pUpq (Φ) and S12(Upq (Φ)) = qUpq (Φ). However, the
quantities U1

−1(Φ) and U−1
1 (Φ) vanish identically because the operators E represent

the action of the Lie algebra g. Thus we have just U(Φ) = U1
1 (Φ) + U−1

−1 (Φ).
So the condition that U(Φ) be totally symmetric, i.e. that U(Φ) = U1

1 (Φ), is
equivalent to the condition that the quantity U−1

−1 (Φ) vanishes. Therefore, the field Φ
obeys the field equation that the completely skew part of the quantity [S12(F ⊗F )−
δ⊗F ]Φ(f) should vanish, or equivalently that the totally skew part of (F ⊗F + δ⊗
F )Φ(f) must vanish, so that ∧(F⊗F+δ⊗F )Φ(f) = 0. Note that ∧(F⊗F+δ⊗F )Φ(f)
is an element of Ω ⊗Ω(V ∗)⊗ C∞(M,Ω2).

We may summarize the above discussion with definition 4.5 and lemma 4.6 as
follows.

Definition 4.5. The linear space Z(M) is the space of all smooth Ω2-valued
functions Ψ , defined globally on the space M , and obeying the following relations,
valid for any v ∈ x ∈M :

v ∧ Ψ(x) = 0; (4.4)
∧F (Ψ)(x) = 0; (4.5)

∧(F ⊗ F + δ ⊗ F )(Ψ)(x) = 0. (4.6)

Lemma 4.6. The map F has range in the space Z(M).

A separate proof of lemma 4.6 is given below (lemma 8.4). Because of lemma 4.6,
we henceforth regard the linear operator F as a linear map, F : C∞(V,−2)→ Z(M).

We next state the main conjecture.

Conjecture 4.7. The map F : C∞(V,−2) → Z(M) is an isomorphism and its
inverse may be explicitly given.

The purpose of the present work is to prove, using complex analysis, the following
result.

Theorem 4.8. The map F : C∞(V,−2) → Z(M) is an isomorphism on to its
range and its inverse may be explicitly given.

A precise statement and proof of theorem 4.8 is provided in theorem 9.2 below.
To proceed further we need to simplify the field equations. Using indices the desired

equations, given in definition 4.5, for a field Ψ , defined globally on M and taking
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values in Ω2 are the following three equations, valid for all v ∈ x ∈M :

v[αΨβγ](x) = 0; (4.7)

E
[α
δ Ψ

βγ](x) + 2δ[α
δ Ψ

βγ](x) = 0; (4.8)

E
[α
[γE

β]
δ] Ψ

εζ(x) + 4E[α
[γ Ψ

β][ε(x)δζ]δ] + δ
[α
[γE

β]
δ] Ψ

εζ(x)

+ 4δ[α
[γ Ψ

β][ε(x)δζ]δ] + 2δ[ε
[γδ

ζ]
δ]Ψ

αβ(x) = 0. (4.9)

Here the field Ψαβ is skew in the indices α and β. First, pull back the field Ψ to
the space N , along the map m. Then equation (4.7) holds if and only if we have
the decomposition Ψ = Xψ, where X is the Ω2-valued coordinate function of the
space Ω2 restricted to the space N and ψ is a scalar field, globally defined on N ,
homogeneous of degree minus one in the variable X. Then calculating the derivative
E(Ψ), we get E(Ψ) = δ(X)ψ +XE(ψ), or F (Ψ) = XE(ψ). Then we have

(∧F (Ψ))αβγδ = 2X [αβXγ]ε∂δεψ = 0.

Therefore, given equation (4.7), equation (4.8) follows automatically, confirming the
statement above that equation (4.3) is only a kinematic equation. Equation (4.9)
now reduces to the simpler equation ∧(E⊗E+ δ⊗E)ψ = 0. Using indices this field
equation is the following:

E
[α
[γE

β]
δ] ψ + δ

[α
[γE

β]
δ] ψ = 0. (4.10)

Next we pull the field ψ back to the space ∆ along the map n, via the relation
X = v∧w, with (v, w) ∈ ∆. Then the operator E decomposes as E = v⊗∂v+w⊗∂w,
where (v, w) are the V -valued coordinate functions for V ×V and ∂v and ∂w are the
corresponding V ∗-valued coordinate vector fields. This entails the following relation:

∧(E ⊗ E) = − ∧ [S12(v ⊗ ∂v ⊗ v ⊗ ∂v + v ⊗ ∂v ⊗ w ⊗ ∂w
+ w ⊗ ∂w ⊗ v ⊗ ∂v + w ⊗ ∂w ⊗ w ⊗ ∂w)]

= − ∧ (v ⊗ v ⊗ ∂v ⊗ ∂v + w ⊗ v ⊗ ∂v ⊗ ∂w + v ⊗ w ⊗ ∂w ⊗ ∂v
+ w ⊗ w ⊗ ∂w ⊗ ∂w + δ ⊗ v ⊗ ∂v + δ ⊗ w ⊗ ∂w)

= − ∧ (w ⊗ v ⊗ ∂v ⊗ ∂w + v ⊗ w ⊗ ∂w ⊗ ∂v + δ ⊗ E). (4.11)

Equation (4.11) gives the formula:

∧(E ⊗ E + δ ⊗ E) = − ∧ (w ⊗ v ⊗ ∂v ⊗ ∂w + v ⊗ w ⊗ ∂w ⊗ ∂v)
= 2(v ∧ w)⊗ (∂v ∧ ∂w). (4.12)

Since v ∧ w 6= 0, on the space ∆, the field equation is reduced just to the equation
(∂v ∧ ∂w)(ψ) = 0.

Alternatively, we may pull back the function ψ to the space H, along the maps
X±, using the relations X = ±2ζ+∧ζ−, for ζ ∈ H. This leads instead to the formula:

∧(E ⊗ E + δ ⊗ E) = − ∧ (ζ ⊗ ζ ⊗ ∂ζ ⊗ ∂ζ + ζ ⊗ ζ ⊗ ∂ζ ⊗ ∂ζ)
= 2(ζ ∧ ζ)⊗ (∂ζ ∧ ∂ζ). (4.13)

Since ζ ∧ ζ 6= 0, the field equation is reduced just to the equation (∂ζ ∧ ∂ζ)(ψ) = 0.
This equation in turn may be reformulated by introducing the (0, 1)-form on the
space H, β(ψ) ≡ ι(∂ζψ)(dζ).
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Lemma 4.9. The (0, 1) form β(ψ) on H is ∂-closed, ∂β(ψ) = 0, if and only if ψ
obeys the field equation (∂ζ ∧ ∂ζ)(ψ) = 0.

Proof . We have

∂β(ψ) = −ι((∂ζ [ι(∂ζψ)) dζ]) dζ

= ([ι(ι(∂ζ ∧ ∂ζ(ψ)) dζ])) dζ = 0,

if and only if (∂ζ ∧ ∂ζ)(ψ) = 0. �

5. The invariant Hilbert transform

Let X be a two-dimensional oriented real vector space. Then the Hilbert trans-
form is a complex structure for the space C∞(X,−1), i.e. a linear isomorphism
H : C∞(X,−1)→ C∞(X,−1), such that −H2 is the identity operator. For the case
that X is R2, with its standard orientation and for any given f ∈ C∞(R2,−1), the
traditional formula for the transform H(f) will be described next. First define an
auxiliary function h(f)(θ, x, y) for (θ, x, y) ∈ R×(R2)′ by the formula, valid whenever
x sin θ − y cos θ 6= 0:

(x sin θ − y cos θ)h(f)(θ, x, y) = f(cos θ, sin θ)− (x cos θ + y sin θ)f(x, y). (5.1)

Lemma 5.1. The function h(f) of equation (5.1) has a unique smooth extension
(still called h(f)) to the space R× (R2)′.

Proof . The differential of the function x sin θ − y cos θ is

(sin θ) dx− (cos θ) dy + (x cos θ + y sin θ) dθ,

which never vanishes. So we need only to show that the right-hand side of equation
(5.1) vanishes whenever the quantity x sin θ − y cos θ vanishes for some (θ, x, y) ∈
R × (R2)′. But if (θ, x, y) ∈ R × (R2)′ and x sin θ − y cos θ = 0, we have y = t sin θ
and x = t cos θ, for some (unique) 0 6= t ∈ R. The right-hand side of equation (5.1)
may then be rewritten as f(cos θ, sin θ) − (t cos2 θ + t sin2 θ)f(t cos θ, t sin θ) = 0, as
required, using the homogeneity of f . �

Note that the function h(f) is periodic: h(f)(θ + π, x, y) = h(f)(θ, x, y), for all
(θ, x, y) ∈ R×(R2)′. The Hilbert transform of f ∈ C∞(R2,−1) , H(f) ∈ C∞(R2,−1)
is defined by the formula:

H(f)(x, y) ≡ (2π)−1
∫ π

−π
h(f)(θ, x, y) dθ = π−1

∫ π/2

−π/2
h(f)(θ, x, y) dθ. (5.2)

Equation (5.2) is valid for all (x, y) ∈ (R2)′. We may verify that this expression
agrees with more traditional formulas for the Hilbert transform as follows.
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Put x = r cosα and y = r sinα, for 0 < r ∈ R and α ∈ R. Then we have,
successively,

H(f)(x, y) = π−1
∫ π/2

−π/2
h(f)(θ + α, x, y) dθ

= p.v.(πr)−1
∫ π/2

−π/2
[cosα sin(θ + α)− sinα cos(θ + α)]−1

× [f(cos(θ + α), sin(θ + α))
− (cosα cos(θ + α) + sinα sin(θ + α))f(cosα, sinα)] dθ

= p.v.(πr)−1
∫ π/2

−π/2
(sin θ)−1

× [f(cos(θ + α), sin(θ + α))− cos θf(cosα, sinα)] dθ

= p.v.(πr)−1
∫ π/2

−π/2
(sin θ)−1f(cos(θ + α), sin(θ + α)) dθ

= p.v.(πr)−1
∫ α+π/2

α−π/2
(sin(θ − α))−1f(cos θ, sin θ) dθ

= p.v.(π)−1
∫ ∞
−∞

(xt− y)−1f(1, t) dt

= p.v.(π)−1
∫ ∞
−∞

(x− yu)−1f(u, 1) du. (5.3)

In equation (5.3), the term p.v. stands for the Cauchy principal value of the integral.
It is not needed for the first line, since the integrand h(f) is everywhere smooth.
In going from the third line to the fourth, we have dropped the integral of cot θ.
This is valid since cot θ is an odd function, only singular at the origin in the range
−π/2 6 θ 6 π/2. So the Cauchy principal value of its integral is zero. The final line
of equation (5.3) gives two traditional formulas for the Hilbert transform. The first
is valid provided x 6= 0 and the second is valid provided y 6= 0.

Given any f ∈ C∞(R2,−1), we also construct a pair of holomorphic functions,
H±(f), as follows:

H±(f)(x, y) ≡ (2iπ)−1
∫ π/2

−π/2
f(cos θ, sin θ)(x sin θ − y cos θ)−1 dθ

= (2iπ)−1
∫ ∞
−∞

f(1, t)(xt− y)−1 dt = (2iπ)−1
∫ ∞
−∞

f(u, 1)(x− yu)−1 du.

(5.4)

Here x and y are complex and non-zero; the domain of H+(f) is given by Im(y/x) >
0, and the domain of H−(f) is given by Im(y/x) < 0.

Note that the functions H±(f) are each homogeneous of degree minus one in
the pair (x, y). Then the fundamental properties of the Hilbert transform may be
summarized as follows (Muskhelishvili 1968; Bell 1992)). First, the functions H±(f)
possess smooth extensions (still denoted H±(f)) to the closure of their respective
domains in (C2)′. Denote by RH±(f) the restriction of (the extensions of) H±(f) to
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(R2)′. Then the functions RH±(f) are elements of C∞(R2,−1)⊗C and we have the
relations,

RH
+(f)− RH−(f) = f, RH

+(f) + RH
−(f) = −iH(f). (5.5)

Further, the functions H±(f), satisfying these properties, are unique. Note that
it follows immediately from the uniqueness that the operator −H2 is the identity
operator. Also we have the complex conjugation relations,

[H+(f)(x, y)]′ = −H−(f)(x′, y′), (5.6)

valid for all (x, y) ∈ (C2)′, with x 6= 0 and Im(y/x) > 0;

[RH+(f)(x, y)]′ = −RH−(f)(x, y), (5.7)

valid for all (x, y) ∈ (R2)′.

Example 5.2. Consider the case that f(x, y) ≡ (αx + βy)(ax2 + 2bxy + cy2)−1,
for all (x, y) ∈ (R2)′, where the real constants α, β, a, b and c satisfy the conditions:
α and β are not both zero, 0 < a, 0 < c and 0 < ac − b2. Define the quantities
k ≡ (ac−b2)1/2, γ ≡ k−1(aβ−bα), δ ≡ k−1(bβ−cα) and ε ≡ k−2(cα2−2bαβ+aβ2).
Note that ε > 0. Then we find the following formulas for the functions H(f) and
H±(f):

H(f)(x, y) = (γx+ δy)(ax2 + 2bxy + cy2)−1, (5.8)

valid for all (x, y) ∈ (R2)′;

2H+(f)(x, y) = ε[(α+ iγ)x+ (β + iδ)y]−1, (5.9)

valid for all (x, y) ∈ (C2)′, with x 6= 0 and Im(y/x) > 0;

2H−(f)(x, y) = ε[(iγ − α)x+ (iδ − β)y)]−1, (5.10)

valid for all (x, y) ∈ (C2)′, with x 6= 0 and Im(y/x) < 0.
Note that Im[(α+iγ)/(β+iδ)] = (βγ−αδ)(β2 +δ2)−1 > 0, since βγ−αδ = kε > 0,

so both the functions H±(f) are well defined on their domains.

We next reformulate the Hilbert transform invariantly. So let X be any oriented
two-dimensional real vector space and let f ∈ C∞(X,−1) be given.

Lemma 5.3. There exists a unique smooth function h(f) ∈ C∞(X ′×X ′), homo-
geneous of degrees minus one in each of its X ′ arguments and taking values in X∗,
such that we have the following relation, valid for all (u, v) ∈ X ′ ×X ′:

f(u)u− f(v)v = ι(h(f)(u, v))(u ∧ v). (5.11)

An equivalent definition of h(f)(u, v) is

ι(h(f)(u, v))(u) = −f(v), ι(h(f)(u, v))(v) = −f(u), (5.12)

valid for all (u, v) ∈ X ′ ×X ′.
Proof . If u ∈ X and v ∈ X are such that u ∧ v 6= 0, then the pair u, v forms a

basis of X. Let u∗, v∗ be the dual basis of X∗ (so we have u∗(u) = v∗(v) = 1 and
v∗(u) = u∗(v) = 0). Then put h(f)(u, v) ≡ −f(v)u∗−f(u)v∗. As the vectors u and v
vary, this gives a well-defined function h(f) satisfying the requirements of the lemma
whenever u ∧ v 6= 0. It remains to show that the function h(f) extends smoothly
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to the space of all (u, v) ∈ X ′xX ′. Fix the vector u ∈ X ′. Let the pair u,w be a
basis of X for some fixed vector w ∈ X, with dual basis u∗, w∗. If now v ∈ X ′, then
v = su+ tw, for some unique real numbers s and t, not both zero. Then we have the
following relation, valid for any real t 6= 0:

h(f)(u, v) = −f(su+ tw)u∗ − t−1(f(u)− sf(su+ tw))w∗. (5.13)

By Taylor’s theorem there exists a unique smooth function k(f)(s, t, u, w), defined
for all (s, t) ∈ (R2)′ and all pairs u,w ∈ X ×X, with u∧w 6= 0, such that whenever
t 6= 0 and u ∧ w 6= 0, we have the relation:

t−1(f(u)− sf(su+ tw)) = k(f)(s, t, u, w). (5.14)

Then the formula h(f)(u, v) ≡ −f(su+ tw)u∗ − k(f)(s, t, u, w)w∗, with v = su+ tw
extends the function h(f) smoothly (and uniquely, by continuity) to the space of all
(u, v) ∈ X ′ ×X ′. �

Note that by uniqueness, we have h(f)(u, v) = h(f)(v, u), for all (u, v) ∈ X ′×X ′.
Next consider the one form η(f)(v) ≡ ι(h(f)(u, v))(du). Then η(f)(v) is a smooth

one form, globally defined onX ′, smoothly varying as v ∈ X ′ varies and homogeneous
of degree minus one in the variable v ∈ X ′.

Lemma 5.4. The one-form η(f)(v) is closed: dη(f)(v) = 0, for all v ∈ X ′.
Proof . By continuity, we may assume u∧v 6= 0. Using lowercase Latin abstract in-

dices for the tensor algebra ofX, we have η(f)(v) = h(f)a(u,v) dua, where h(f)a(u,v)
obeys the defining relations uah(f)a(u, v) = −f(v) and vah(f)a(u, v) = −f(u), given
in equation (5.12). If ∂a denotes the derivative with respect to the variable ua, it
must be shown that ∂ah(f)b is symmetric in its index pair. So, since u ∧ v 6= 0, it
is sufficient to demonstrate that 0 = (uavb − vaub)∂ah(f)b. Now, using the defining
relations of h(f)a and the formula ∂aub = δba, we have

(uavb − vaub)∂ah(f)b = ua∂a(vbh(f)b)− va∂a(ubh(f)b) + vaδbah(f)b
= vah(f)a − ua∂a(f(u)) + va∂a(f(v))
= −f(u)− ua∂a(f(u)) = 0,

as required. �

Corollary 5.5. For each v ∈ X ′, the form η(f)(v) defines an element [η(f)(v)]
of H1(X ′, R), depending smoothly on the vector v. There is then a unique function
HX(f) ∈ C∞(X,−1), such that HX(f)(v) = (2π)−1

∫
X

([η(f)(v)]), for all v ∈ X ′.
Definition 5.6. For any X a real two-dimensional oriented vector space and for

any f ∈ C∞(X,−1), the function HX(f) of corollary 5.5 is the Hilbert transform
of f . The Hilbert transform for the space X is the linear map, HX : C∞(X,−1) →
C∞(X,−1), which takes any function f ∈ C∞(X,−1) to its Hilbert transform
HX(f).

Lemma 5.7. HY (fλ) = HX(f)λ, for any f ∈ C∞(X,−1) and for any λ : Y → X,
an isomorphism of oriented two-dimensional real vector spaces X and Y .

Proof . The construction of the Hilbert transform is obviously functorial, with OK?
respect to such isomorphisms. �
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Lemma 5.8. If X = R2, with its standard orientation, then the operator HX

agrees with the operator H defined in equation (5.2) above.

Proof . Take X = R2 and map the real interval [−π, π] to R2 by the formula:
s(θ) = (cos θ, sin θ), for any θ ∈ [−π, π]. Then we have the integral formula for the
quantity HX(f)(x, y), for any (x, y) ∈ (R2)′:

HX(f)(x, y) = (2π)−1
∫ π

−π
s∗(η(f)(x, y)) dθ. (5.15)

Put u = (p, q) ∈ (R2)′ and v = (x, y) ∈ (R2)′. Then η(f)(x, y) = h0(f) dp+h1(f) dq,
where the functions h0(f)(p, q, x, y) and h1(f)(p, q, x, y) are given, whenever qx −
py 6= 0 by the formulas (from equation (5.11)):

(qx− py)h0(f)(p, q, x, y) = yf(x, y)− qf(p, q),
(qx− py)h1(f)(p, q, x, y) = −xf(x, y) + pf(p, q).

}
(5.16)

Then we have the pullback formula:

s∗(η(f)(x, y)) = [−h0(f)(cos θ, sin θ, x, y) sin θ + h1(f)(cos θ, sin θ, x, y) cos θ] dθ
= g(f)(θ, x, y) dθ,

where the smooth function g(f)(θ, x, y) is defined for all (θ, x, y) ∈ R× (R2)′, by the
formula:

(x sin θ − y cos θ)g(f)(θ, x, y) = − sin θ(x sin θ − y cos θ)h0(f)(cos θ, sin θ, x, y)
+ cos θ(x sin θ − y cos θ)h1(f)(cos θ, sin θ, x, y)

= − sin θ[yf(x, y)− f(cos θ, sin θ) sin θ]
+ cos θ[−xf(x, y) + f(cos θ, sin θ) cos θ]

= f(cos θ, sin θ)− (x cos θ + y sin θ)f(x, y). (5.17)

Equation (5.17) is valid whenever x sin θ − y cos θ 6= 0 and elsewhere the function
g(f) extends by continuity.

So now we have the expression:

HX(f)(x, y) = (2π)−1
∫ π

−π
g(f)(θ, x, y) dθ. (5.18)

But equations (5.17) and (5.18) are in exact agreement with equations (5.1) and
(5.2), so the lemma holds. �

Corollary 5.9. The operator −H2
X is the identity operator, for any X.

Proof . Pick an isomorphism λ : X → R2 and apply lemmas 5.7 and 5.8. �

Finally, we provide an invariant definition of the functionsH±(f). Denote by D(X)
the domain of all ζ ∈ XC, such that ζ ∧ ζ 6= 0. Then define a complex-valued one
form ρ(f)(ζ) on the space X ′ by the formula, for any ζ ∈ D(X):

(u ∧ z)(ρ(f)(ζ))(u) = 1
2 if(u)u ∧ du. (5.19)

If u ∈ X and ζ ∈ D(X), denote by (u∗, ζ∗) the basis dual to the basis (ζ, u) of XC.
Then ι(u∗)(u ∧ ζ) = −u and ι(u∗)(u ∧ du) = −u(ι(u∗)(du)) so we may also write
out the one form ρ(f)(ζ) explicitly as follows:

(ρ(f)(ζ))(u) = 1
2 if(u)(ι(u∗)(du)). (5.20)
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Lemma 5.10. The one form ρ(f)(ζ) is closed: dρ(f)(ζ) = 0, for any ζ ∈ D(X).

Proof . Since ι(u∗)(ζ) = 1, we have ι(du∗)(ζ) = 0. It follows that du∗ = αζ∗,
for some one form α. Since ι(u∗)(ζ) = 0, we have ι(du∗)(u) + ι(u∗)(du) = 0, so
αι(ζ∗)(u) + ι(u∗)(du) = 0, so α = −ι(u∗)(du). Then we have, from equation (5.20):

2i[d(ρ(f)(ζ))](u) = ι(du∗)(u)df − f(u)ι(du∗)(du)
= (ι(u∗)(du))(ι(∂uf)(du)) + f(u)(ι(u∗)(du)ι(ζ∗)(du)). (5.21)

Now let (∂uf)(u) = p(u)u∗ + q(u)ζ∗, for all u ∈ X ′. Then in particular we have
ι(∂uf)(u) = −f(u) = q(u). Inserting these relations into equation (5.21), we get

−2i[d(ρ(f)(ζ))](u) = p(u)(ι(u∗)(du))(ι(u∗)(du))− f(u)(ι(ζ∗)(du))(ι(u∗)(du))
− f(u)(ι(u∗)(du))(ι(ζ∗)(du)) = 0. (5.22)

�

Corollary 5.11. For each fixed ζ ∈ D(X), the form ρ(f)(ζ) defines an element
[ρ(f)(ζ)] of H1(X ′, C).

Denote by P (f)(ζ) ∈ C the quantity (2π)−1
∫
X

[ρ(f)(z)] and by P (f) the function
on D(X) whose value at any ζ ∈ D(X) is P (f)(ζ).

Corollary 5.12. As ζ ∈ D(X) varies, keeping f fixed, the function P (f) is holo-
morphic on D(X) and homogeneous of degree −1 in the variable ζ.

Now the domain D(X) is the disjoint union of two open subsets: D(X) = D+(X)∪
D−(X), where D±(X) is by definition the set of all ζ ∈ D(X), such that (ζ+,±ζ−)
is an oriented basis of X.

Definition 5.13. The functions H±X(f) are by definition the restrictions of the
function P (f) to the domains D±(X), respectively.

The functions H±X(f) of definition 5.13 are each holomorphic and homogeneous of
degree minus one.

Lemma 5.14. We have H±Y (fλ) = H±X(f)λC, for any f ∈ C∞(X,−1) and for any
λ : Y → X, an isomorphism of oriented two-dimensional real vector spaces X and
Y , with complexification λC : YC → XC.

Proof . The construction of the quantityH±X(f) is obviously functorial, with respect
to such isomorphisms. �

Theorem 5.15. The functions H±X(f) extend smoothly to functions defined on
the closure of the domains D±(X) in (XC)′. Denote by RH

±
X(f) the restrictions to

X ′ of the extensions of H±X(f). Then RH
±
X(f) ∈ C∞(X,−1) ⊗ C and we have the

decompositions:

RH
+
X(f)− RH−X(f) = f ; (5.23)

RH
+
X(f) + RH

−
X(f) = −iHX(f). (5.24)

Furthermore, these decompositions are unique.
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Proof . Using a suitable isomorphism λ : X → R2, by lemma 5.14, it is suffi-
cient to establish this result when X = R2, equipped with its standard orientation.
Henceforth assume X = R2, with its standard orientation. Then we must show that
H±X(f) = H±(f), for any f ∈ C∞(X,−1), where H±(f) is defined by equation (5.4).

Let (x, y) ∈ C2 be such that xy − yx 6= 0. Note that neither x nor y is zero. Now
the ordered pair of vectors Re(x, y) and Im(x, y) form an oriented basis of R2, with
its usual orientation, if and only if

0 < Re(x) Im(y)− Im(x) Re(y) = (4i)−1[(x+ x)(y − y)− (x− x)(y + y)]

= (2i)−1[−xy + yx] = (2ixx)−1(y/x− y/x)

= (xx)−1 Im(y/x).

So D±(R2) is the domain of all (x, y) ∈ C2, such that x 6= 0 and ± Im(y/x) > 0.
Then we have, using the map s introduced in lemma 5.8 above:

H±X(f)(x, y) = (2π)−1
∫ π

−π
s∗(ρ(f)(x, y))(θ) dθ. (5.25)

Now s∗(du)(θ) = (− sin θ, cos θ) dθ and when u = (cos θ, sin θ) we find, from the
definition of u∗, given after equation (5.19), that u∗ = (− sin θ, cos θ) (−x sin θ +
y cos θ)−1. So s∗(ι(u∗)(du))(θ) = (−x sin θ+ y cos θ)−1 dθ. So by equation (5.20), we
have

s∗(ρ(f)(x, y))(θ) = −1
2 if(cos θ, sin θ)(x sin θ − y cos θ)−1 dθ.

Then equation (5.25) becomes the following:

H±X(f)(x, y) = (4iπ)−1
∫ π

−π
f(cos θ, sin θ)(x sin θ − y cos θ)−1 dθ

= (2iπ)−1
∫ π/2

−π/2
f(cos θ, sin θ)(x sin θ − y cos θ)−1 dθ. (5.26)

Here H±X(f)(x, y) is defined for ± Im(y/x) > 0. Comparing equations (5.4) and
(5.26), we find exact agreement. �

Corollary 5.16. For all ζ ∈ (XC)′ in the closure of D+(X) and for all f ∈
C∞(X,−1), we have the relation,

(H+(f)(ζ)) = −H−(f)(ζ). (5.27)

For all v ∈ X ′ and for all f ∈ C∞(X,−1), we have the relation,

(H+(f)(v)) = −H−(f)(v). (5.28)

Proof . These relations follow from the uniqueness of the decomposition of equa-
tions (5.23) and (5.24), by taking the complex conjugates of equations (5.23) and
(5.24) and using the fact that the function f is real valued. �

Example 5.17. Take f(v) ≡ g(a, v)g(v, v)−1, for any v ∈ X ′, where a ∈ X ′ is
fixed and g is a symmetric bilinear form on the complex vector space XC, which is
real and definite when restricted to the space X. Let b ∈ X ′, be the unique vector
such that such that g(a, b) = 0, g(b, b) = g(a, a) and the pair (a, b) is an oriented
basis for X.
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Then we have the following expression for the function h(f), valid for any (u, v) ∈
X ′ ×X ′:
h(f)(u, v) = [g(a, )g(u, v)− g(u, )g(a, v)− g(v, )g(a, u)][g(u, u)g(v, v)]−1. (5.29)

Using definition 5.6, we find the following formula for the function H(f), valid for
any v ∈ X ′:

H(f)(v) = −g(b, v)g(v, v)−1. (5.30)

Then D±(X) = ζ ∈ XC; ± Im(g(ζ, b)/g(ζ, a)) > 0 and the functions H±(f) are given
as follows:

±2H±(f)(ζ) = −g(a, a)[−g(ζ, a)± ig(ζ, b)]−1, (5.31)

valid for all ζ ∈ D±(X).

6. Application of a sheaf cohomology exact sequence

For any integer m, denote by Θ(m) the sheaf of germs of holomorphic sections of the
holomorphic line bundle over the space PC of Chern class m.

In this section we take d(V ) = n + 1, where n > 3, n integral and prove the
following theorem.

Theorem 6.1. The cohomology group H1(PC − P ;Θ(−2)) vanishes.

We begin with a standard exact sequence for a triple consisting of X a compact
complex manifold, S a closed subset of X and L a holomorphic line bundle over X.

For each integer k, Hk(S,L) is by definition the space of all smooth ∂-closed
(0, k) forms with values in L, defined on some open set U containing S, modulo the
equivalence relation α ≡ β, if and only if there exists an open set U ′ containing S,
such that U ′ is in the domain of definition of both α and β and α− β, restricted to
U ′ is ∂-exact.

Lemma 6.2. There is an exact cohomology sequence:

· · · εk−→ Hk(X,L)
ρk−→ Hk(S,L) δk−→ Hk+1

c (X − S,L)
εk+1−−−→ Hk+1(X,L)

ρk+1−−−→ · · · .
Here the subscript c refers to cohomology with compact supports.

Proof . The maps of the exact sequence are as follows:
ρk : Hk(X,L)→ Hk(S,L) is the natural restriction map.
εk : Hk+1

c (X − S,L) → Hk+1(X,L) is the natural extension map, extending by
zero any form of compact support in X − S to the whole of X.
δk : Hk(S,L)→ Hk+1

c (X−S,L) is defined as follows: let a representative ∂-closed
(0, k) form α be given defined on an open subset U containing S. After shrinking
the domain of α and smoothing to zero, we can construct a (0, k) form β, globally
defined on X, which agrees with α on an open subset U ′ of U , where U ′ contains S.
Put γ ≡ ∂β. Then it is clear that γ has compact support in X − S and ∂γ = 0, so
γ represents an element of Hk+1

c (X − S,L). By definition this element is the image
under δk of the element of Hk(S,L) represented by α.

It is easy to check that the maps are well defined and that the sequence is indeed
exact. �
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Corollary 6.3. There is an exact cohomology sequence, for any integer m:

Hk(PC, Θ(m))
ρk−→ Hk(P,Θ(m)) δk−→ Hk+1

c (PC − P,Θ(m))
εk+1−−−→ Hk+1(PC, Θ(m)).

Lemma 6.4. The group H1(PC, Θ(−2)) vanishes.

Proof . A direct proof that the group H1(PC, Θ(−2)) vanishes is given in corol-
lary 7.15 below. Alternatively, this lemma is a special case of the Borel–Weil–Bott
theorem, which in particular demonstrates that the sheaf cohomology of holomorphic
line bundles over complex projective space is concentrated in the lowest and highest
dimensions. �

Corollary 6.5. The group Hn−1(PC, Θ(1− n)) vanishes.

Proof . By Serre duality, the group Hn−1(PC, Θ(1 − n)) is dual to the group
Hn,1(PC, Θ(n− 1)). In turn the group Hn,1(PC, Θ(n− 1)) is naturally isomorphic to
the group H1(PC, Θ(−2))⊗Ωn+1(V ∗C ). Now, by lemma 6.4, the group H1(PC, Θ(−2))
vanishes. Therefore, the group Hn,1(PC, Θ(n−1)) vanishes. So by Serre duality again,
the group Hn−1(PC, Θ(1 − n)) must vanish also, as required. (Of course this result
also is included in the Borel–Weil–Bott theorem.) �

Lemma 6.6. The group Hn−2(P,Θ(1− n)) vanishes.

Proof . If U is open and U contains P , then there is an open Stein submanifold
U ′ of PC, such that U ⊃ U ′ ⊃ P . So the group Hn−2(U ′, Θ(1 − n)) vanishes, since
n > 3. So the group Hn−2(P,Θ(1− n)) vanishes. �

Proof of theorem 6.1. Consider the part of the sequence of corollary 6.3, with
m = 1− n starting at the group Hn−2(P,Θ(1− n)):

Hn−2(P,Θ(1− n))
δn−2−−−→ Hn−1

c (PC − P,Θ(1− n))
εn−1−−−→ Hn−1(PC, Θ(1− n)).

By lemma 6.6, the group Hn−2(P,Θ(1 − n)) vanishes. By corollary 6.5, the group
Hn−1(PC, Θ(1 − n)) vanishes. Therefore, this part of the exact sequence becomes:
0 → Hn−1

c (PC − P,Θ(1 − n)) → 0. Since the sequence is exact, we deduce that the
group Hn−1

c (PC − P,Θ(1 − n)) vanishes. By Serre duality the group Hn−1
c (PC −

P,Θ(1− n)) is dual to the group Hn,1(PC − P ;Θ(n− 1)). It follows that the group
Hn,1(PC − P ;Θ(n − 1)) also vanishes. The group Hn,1(PC − P ;Θ(n − 1)) in turn
is isomorphic to the group H1(PC − P ;Θ(−2)) ⊗ Ωn+1(V ∗C ). Therefore, the group
H1(PC − P ;Θ(−2)) ⊗ Ωn+1(V ∗C ) also vanishes. But the space Ωn+1(V ∗C ) is a one-
dimensional vector space, so is non-zero, so the group H1(PC − P ;Θ(−2)) must
vanish, as required. �

Corollary 6.7. If β is a ∂-closed (0, 1) form defined globally on PC − P , taking
values in Θ(−2), then there exists a unique smooth section α, of Θ(−2), globally
defined on PC − P , such that ∂α = β.

Proof . Since β is ∂-closed, it represents an element of the cohomology group
H1(PC−P ;Θ(−2)). But this group vanishes by theorem 6.1. Therefore, β is ∂-exact,
so some global (on PC − P ) section α of Θ(−2) exists, such that ∂α = β. If also
another global section τ of Θ(−2) exists, with ∂τ = β, then we have ∂(α−τ) = 0, so
the section α−τ is holomorphic. Let y ∈ PC−P . Then y lies on at least one (actually
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infinitely many) projective line of PC, which does not intersect the subspace P . The
restriction of α − τ to any such line must be zero, since the sheaf Θ(−2) has no
non-zero global holomorphic sections on the projective line (by Liouville’s theorem).
Therefore, the functions α and t agree on such a line. In particular, α(y) = τ(y).
Since y was arbitrary in PC − P , this establishes that α = τ and the corollary is
proved. �

7. The solution of the problem ∂α = β

By corollary 6.7, if β is a ∂-closed (0, 1) form taking values in Θ(−2) and globally
defined on PC − P , then a unique section α of Θ(−2) exists, smooth and global on
PC−P , such that ∂α = β. One may then ask whether or not a formula can be given
for α in terms of β. Remarkably, such a formula does exist and will be given in this
section.

For any (ζ, η) ∈ V 2
C , with ζ ∧ η 6= 0, denote by L(ζ, η) the projective line in

PC, through the points pC(ζ) and pC(η). Equip the line L(ζ, η) with its standard
orientation. For any open set W in PC, we introduce the following spaces.

1. H(W ): the inverse image of W in the space V ′C, under the natural projection
pC.

2. L(W ): the space of all pairs (ζ, η) ∈ V 2
C , with ζ ∧ η 6= 0, such that the line

L(ζ, η) lies entirely in W .

3. M(W ): the space of all triples (ζ, η, u) ∈ V 2
C ×PC, such that (ζ, η) ∈ L(W ) and

u ∈ L(ζ, η).

4. N(W ): the submanifold of V 3
C , consisting of all triples (ζ, η, υ) ∈ V 2

C ×V ′C, such
that (ζ, η, pC(υ)) ∈M(W ).

We also introduce the following maps.

1. w : M(W )→W , w(ζ, η, u) = u, for any (ζ, η, u) ∈M(W ).

2. n : N(W )→W , n(ζ, η, υ) = pC(υ), for any (ζ, η, υ) ∈ N(W ).

3. N : N(W )→ H(W ), N(ζ, η, υ) = υ, for any (ζ, η, υ) ∈ N(W ).

For any fixed (ζ, η) ∈ L(W ), denote by M(ζ, η) the space of all triples (ζ, η, u) ∈
M(W ), such that u ∈ L(ζ, η). Then the map w, restricted to the space M(ζ, η) is an
oriented diffeomorphism onto its image, the space L(ζ, η).

For W open in PC, W will be said to be admissible if and only if, given any point
y of W , the space of all projective lines through y, lying entirely in W , is non-
empty and connected. Throughout this section, until corollary 7.19, W will refer to
an admissible open subset of PC and β will be a ∂-closed (not necessarily ∂-exact)
smooth (0, 1) form defined globally on W , taking values in the sheaf Θ(−2).

If w is any form defined on the space M(W ), and if (ζ, η) ∈ L(W ), denote by
w(ζ, η) the restriction of w to the space M(ζ, η). If w is a two form on M(W ) and
takes values in an abelian group A and if (ζ, η) ∈ L(W ), denote by [w(ζ, η)] the
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class represented by w(ζ, η) in the cohomology group H2(M(ζ, η), A). Then define
L(w) ∈ C∞(L(W ), A) by the formula, for any (ζ, η) ∈ L(W ):

L(w)(ζ, η) ≡
∫
M(ζ,η)

[w(ζ, η)]. (7.1)

In equation (7.1),
∫
M(ζ,η) is the canonical isomorphism:∫

M(ζ,η)
: H2(M(ζ, η), A)→ A

for any abelian group A.
Let the pair (ζ, η) provide coordinate functions for the space L(W ), and υ a coor-

dinate for the space H(W ), where each of the quantities ζ, η and υ takes values in
VC. Then the triple (ζ, η, υ) gives corresponding coordinates for the space N(W ) and
on N(W ) we have the relation υ = λζ + µη, for unique scalar functions λ and µ,
defined globally on the space N(W ). Put θ ≡ λ dµ − µdλ. Denote by χ the holo-
morphic one form on H(W ), taking values in the space Ω2

C, given by the formula:
χ ≡ υ∧ dυ. Then the form χ also represents a holomorphic one form globally defined
on the space W , taking values in Ω2

C ⊗ Θ(2). Similarly, the functions λ and µ may
be regarded as sections over M(W ) of the pullback of the sheaf Θ(1) along the map
w. Also the form θ may be regarded as a holomorphic one form on the space M(W ),
taking values in the pullback of the sheaf Θ(2) along the map w. Then we have the
relation, valid for any (ζ, η) ∈ L(W ):

χ(ζ, η) = ζ ∧ ηΘ(ζ, η). (7.2)

One may represent the (0, 1) form β as β = ι((B(υ, υ)) dυ, where B is a smooth V ∗C -
valued function, globally defined on the space H(W ) and homogeneous of degrees
(−2,−1) in the pair (υ, υ), such that ι(B(υ, υ))υ = 0. Henceforth we abbreviate
B(υ, υ) by B(υ).

Now the product βχ, being homogeneous of degrees (0, 0) in the pair (υ, υ) rep-
resents a smooth (1, 1) form defined on the space W , taking values in Ω2

C. Put
Γ (β) ≡ w∗(βχ) and γ(β) ≡ w∗(b)θ, where w∗ is the pullback along the map w.
Then Γ (β) and γ(β) are (1, 1) forms on M(W ), taking values in Ω2

C and C, respec-
tively. Therefore, the quantities Φ(β) ≡ L(Γ (β)) and φ(β) ≡ L(γ(β)) are well-defined
smooth functions on L(W ), taking values in the spaces Ω2

C and C, respectively. Fur-
ther, from equation (7.2), we have the relation Φ(β) = (ζ ∧ η)φ(β).

Lemma 7.1. If the form β is ∂-exact, then the functions Φ(β) and φ(β) vanish
identically.

Proof . Fix any (ζ, η) ∈ L(W ). We only need to verify that Φ(β)(ζ, η) vanishes,
when β = ∂α, for some α. If β = ∂α, then we have βχ = ∂(αχ), since the form χ
is holomorphic. Since the restriction map to the space M(ζ, η) is holomorphic, we
have, for any (ζ, η) ∈ L(W ) the following relations:

(βχ)(ζ, η) = [∂(αχ)](ζ, η) = ∂[(αχ)(ζ, η)]
= (d− ∂)[(αχ)(ζ, η)] = d[(αχ)(ζ, η)]. (7.3)

In equation (7.3), we have used the fact that, since the form (αχ)(ζ, η) is of type
(1, 0), defined on the one-dimensional complex manifold, M(ζ, η), it is killed by the
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∂-operator. Equation (7.3) then shows that the form (βχ)(ζ, η) is exact and therefore
represents the zero element of the cohomology group H2(M(ζ, η), Ω2

C). Hence from
the definition of Φ(β), we have Φ(β)(ζ, η) = 0, so the functions Φ(β) and φ(β) vanish
identically, as required. �

We next derive explicit expressions for the quantities φ(β) and Φ(β). It is sufficient
to give a formula for just the quantity φ(β). We may use the ratios ρ = µ/λ and
σ = λ/µ as (extended) complex coordinates for the Riemann sphere. These ratios
are related by the formula ρσ = 1.

One has the following formulas, at any fixed (ζ, η) ∈ L(W ):

υ = λ(ζ + ρη) = µ(σζ + η); (7.4)

θ = λ2 dρ = −µ2 dσ; (7.5)

β = ι(B(υ))(dυ) = ι(B(υ))(d[λ(ζ + ρη)]) = λι(B(υ))d[(ζ + ρη)]

= λ(ι(B(υ))(η)) dρ = λ−2ι(B(ζ + ρη))(η) dρ = ι(B(υ))(d[µ(σζ + η)])

= µι(B(υ))(d[(σζ + η)]) = µ(ι(B(υ))(ζ)) dσ

= µ−2ι(B(σζ + η))(ζ) dσ. (7.6)

In equation (7.6), we have used the fact that ι(B(υ)υ = 0.
Then for any fixed (ζ, η) ∈ L(W ), we have the following expressions for the form

γ(β), using the homogeneity of the function B(υ):

γ(β) = βθ = λι(B(λζ + µη))(η) dρ(λ2 dρ) = ι(B(ζ + ρη))(η) dρ dρ

= µι(B(λζ + µη))(ζ) dσ(−µ2 dσ) = −ι(B(σζ + η))(ζ) dσ dσ. (7.7)

Note that the functionB(ζ+ρη) is smooth on the domain of all (ζ, η, ρ) ∈ L(W )×C
and the function B(σζ + η) is smooth on the domain of all (ζ, η, σ) ∈ L(W ) × C
and these functions are related, by the following formulas, valid provided ρ 6= 0 and
σ 6= 0:

B(σζ + η) = ρ2ρB(ζ + ρη), ι(B(σζ + η))(ζ) = −(ρρ)2ι(B(ζ + ρη))(η). (7.8)

So now the integral giving the quantity φ(β)(ζ, η) may be written:

φ(β)(ζ, η) =
∫
M(ζ,η)

[(βθ)(ζ, η)]

=
∫
ι(B(ζ + ρη))(η) dρ dρ = −

∫
ι(B(σζ + η))(ζ) dζ dζ. (7.9)

The integrals of equation (7.9) are taken over the whole complex plane, which is
equipped with its usual orientation. We wish to avoid all questions of convergence
of integrals at infinity, so we will rewrite equation (7.9) as a sum of manifestly finite
integrals, using the fact that |r| > 1, if and only if |s| 6 1. Denote by D the set of
all complex numbers of modulus not more than unity, equipped with its standard
orientation, and by ∂D its boundary, oriented counterclockwise.

Lemma 7.2. We have the integral expression, valid for any (ζ, η) ∈ L(W ):

φ(β)(ζ, η) =
∫
D

[ι(B(ζ + λη))(η)− ι(B(λζ + η))(ζ)] dλ dλ. (7.10)
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Proof . We take either of the integral expressions of equation (7.9) and perform
an inversion on the part of the integral outside the unit disc D. The required result
then follows immediately, after using equation (7.8). �

Equation (7.10) shows that the function φ(β) is globally defined and everywhere
smooth on the space L(W ). Note that equations (7.8) and (7.10) are easily shown
to imply that the quantity φ(β)(ζ, η) is skew in its arguments:

φ(β)(ζ, η) = −φ(β)(η, ζ), (7.11)
valid for all (ζ, η) ∈ L(W ). In the following we shall use the chain rule frequently.
We shall use the following abbreviations systematically:

1. A ·B for the quantity ι(A)(B);

2. X for the variable ζ + λη and Y for the variable λζ + η (where λ ∈ C);

3. Z for the variable ζ + reiθη and U for the variable reiθz+ η (where r and θ are
real);

4. ∂λ, ∂λ, ∂r and ∂θ for the partial derivatives ∂/∂λ, ∂/∂λ, ∂/∂r and ∂/∂θ,
respectively.

Lemma 7.3. The function φ(β)(ζ, η) is holomorphic in the variables ζ and η.

Proof . First, we differentiate equation (7.10) with respect to the variable η. Using
the chain rule and the fact that the form β is ∂-closed, we have the following formulas,
for any fixed A ∈ VC:

∂η ·A(B(ζ + λη) · η) = λ(∂X ·AB(X)) · η +B(X) ·A
= λ(∂X(B(X) ·A)) · η +B(X) ·A
= λ∂λ(B(X) ·A)) +B(X) ·A
= ∂λ[λB(X) ·A], (7.12)

∂η ·A(B(λζ + η) · ζ) = (∂Y ′ ·AB(Y )) · ζ
= [∂Y ′(B(Y ) ·A)] · ζ = ∂λ(B(Y ) ·A), (7.13)

∂ηφ(β)(ζ, η) =
∫
D

∂λ[λ(B(ζ + λη)−B(λζ + η)] dλ dλ

=
∫
D

d[λB(ζ + λη)−B(λζ + η)] dλ

=
∫
∂D

[λB(ζ + λη)−B(λζ + η)] dλ

=
∫
∂D

[λ−1B(ζ + λη)− λ−1B(ζ + λ−1η)] dλ

=
∫
∂D

[λ−1B(ζ + λη)] dλ−
∫
∂D

[µB(ζ + µη)]µ−2 dµ = 0.

(7.14)

Hence the function φ(β)(ζ, η) is holomorphic in the variable η. By the skew symmetry
property of φ(β), equation (7.11), the function φ(β) must be holomorphic also in its
dependence on the variable ζ, as required. �

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


3068 G. Sparling

Lemma 7.4. The function φ(β)(ζ, η) is homogeneous of degrees (−1,−1) in the
variables ζ and η.

Proof . We differentiate equation (7.10), using the chain rule and equation (7.8):

(∂ζφ(β)(ζ, η)) · ζ =
∫
D

∂ζ [B(ζ + λη) · η −B(λζ + η) · ζ] · ζ dλ dλ

=
∫
D

[(∂XB(X)) · η − λ(∂YB(Y )) · ζ] · ζ dλ dλ

=
∫
D

[∂X(B(X) · η) · (X − λη)− λ∂λ(B(Y ) · ζ)] dλ dλ

=
∫
D

[−2B(X) · η − λ∂λ(B(X) · η +B(Y ) · ζ)] dλ dλ

= −φ(β)(ζ, η)−
∫
D

[∂λ(λB(X) · η + λB(Y ) · ζ)] dλ dλ

= −φ(β)(ζ, η) +
∫
∂D

[λB(ζ + λη) · η + λB(λζ + η) · ζ] dλ

= −φ(β)(ζ, η) +
∫
∂D

[−λB(ζ + λη) · η dλ− λB(ζ + λη) · η dλ]

= −φ(β)(ζ, η). (7.15)

So the function φ(β) is homogeneous of degree minus one in the variable ζ. By skew
symmetry, equation (7.11), the function φ(β) is also homogeneous of degree minus
one in the variable η, as required. �

Next consider the form ξ(β) ≡ υβθ. Then for any (ζ, η) ∈ L(W ), the form
ξ(β)(ζ, η) is a smooth (1, 1) form, defined globally on the space M(ζ, η) and homoge-
neous of degrees (−1, 0,−1, 0) in the variables (ζ, ζ, η, η), taking values in the sheaf
Θ(1) ⊗ VC. So the form ξ(β)(ζ, η) represents an element of the sheaf cohomology
group H1,1[M(ζ, η), Θ(1)]⊗ VC.

Lemma 7.5. If ω is a (1, 1) form on the complex projective space PC(X) of X, a
two-dimensional complex vector space, taking values in the sheaf Θ(1), then ω = ∂ψ,
for a unique (1, 0) form ψ on PC(X).

Proof . The form ω represents an element of the sheaf cohomology group

H1,1(PC(X), Θ(1)).

By Serre duality the group H1,1(PC(X), Θ(1)) is dual to the group

H0,0(PC(X), Θ(−1)),

which is the space of global holomorphic sections of the sheaf Θ(−1). But by Liou-
ville’s theorem, the only such section is the zero section. So both the cohomology
groups H0,0(PC(X), Θ(−1)) and H1,1(PC(X), Θ(1)) vanish. Therefore, the form ω is
∂-exact: a smooth (1, 0) form, ψ, taking values in Θ(1), exists such that ω = ∂ψ. The
ambiguity in the quantity ψ is measured by the cohomology groupH1,0(PC(X),Θ(1)).
But this group is in turn isomorphic to the group H0,0(PC(X), Θ(−1)) ⊗ Ω2(X∗),
since the space PC(X) possesses a global everywhere non-vanishing holomorphic sec-
tion of the bundle of (1, 0) forms with values in the bundle Θ(2) ⊗ Ω2(X∗). Since
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H0,0(PC(X), Θ(−1)) vanishes, we have H1,0(PC(X), Θ(1)) = 0 and the form ψ is
unique. �

Applying lemma 7.5, we see that the form ξ(β)(ζ, η) is ∂-exact: ξ(β)(ζ, η) =
∂(ρ(β)(ζ, η)), for a unique (1, 0) form ρ(β)(ζ, η). We find an explicit formula for
ρ(β), essentially by the standard method of Grothendieck, as follows. Define the
form ω(β) by the formula: ω(β) ≡ µ−1ξ(β). Then the form ω(β) is a (1, 1) form,
smooth everywhere on M(W ), except where µ = 0 and is homogeneous of degrees
(−1, 0) in the variables (ζ, ζ) and (0, 0) in the variables (η, η).

The forms ξ(β)(ζ, η) and ω(β)(ζ, η) are given explicitly by the formulas,

ξ(β)(ζ, η) = µω(β)(ζ, η), (7.16)

ω(β)(ζ, η) = ρ−1(ζ + ρη)B(ζ + ρη) · η dρ dρ

= −(σζ + η)B(σζ + η) · ζ dσ dσ. (7.17)

Lemma 7.6. The integral of the form ω(β)(ζ, η) over the oriented two sphere
M(ζ, η), which represents the positive generator of the integral second homology
group of M(ζ, η), is well defined and smooth in the variables (ζ, η).

Proof . We construct an explicit formula for this integral. Denote the value of this
integral, if it exists, by α(ζ, η). Using equation (7.17), the required integral may be
written as follows:

α(ζ, η) =
∫
M(ζ,η)

ω(β)(ζ, η) =
∫
ρ−1(ζ + ρη)(B(ζ + ρη) · η) dρ dρ

= −
∫

(σζ + η)(B(σζ + η) · ζ) dσ dσ = ηφ(β)(ζ, η) + ζψ(ζ, η), (7.18)

ψ(ζ, η) ≡
∫

[B(ζ + ρη) · η]ρ−1 dρ dρ = −
∫

[B(σζ + η) · ζ]σ dσ dσ. (7.19)

Here each integral is to be taken over the whole complex plane, with its usual orien-
tation.

Splitting the integral for ψ(ζ, η) into two pieces, we have also

ψ(ζ, η) = ψ1(ζ, η)− ψ2(ζ, η), (7.20)

ψ1(ζ, η) =
∫
D

[B(ζ + λη) · η]λ−1 dλ dλ, (7.21)

ψ2(ζ, η) =
∫
D

[B(λζ + η) · ζ]l dλ dλ. (7.22)

Now the integral giving the quantity ψ2(ζ, η) is clearly convergent and smooth in
the quantities ζ and η. Equation (7.21) may be rewritten as the following multiple
integral, using polar coordinates:

ψ1(ζ, η) = 2i
∫ π

−π

∫ 1

0
[B(ζ + reiθη) · ηe−iθ] dr dθ. (7.23)

In this form it is obviously convergent and smooth in the parameters ζ and η. The
lemma is proved. �
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Next we study the various derivatives of the quantity α(ζ, η). First consider the
derivative (∂ζψ2) ·η. Using the chain rule, we have, since the function B(Y ) is homo-
geneous of degrees (−2,−1) in the pair (Y, Y ′), for any constant A ∈ VC:

0 = λ[∂Y (B(Y ) ·A)] · Y + λB(Y ) ·A
= λ[∂Y (B(Y ) ·A)] · (λζ + η) + λB(Y ) ·A
= [∂ζ(B(Y ) ·A)] · η + λ

2
∂λ(B(Y ) ·A) + λB(Y ) ·A. (7.24)

In particular, we have from equation (7.24), after replacing A by ζ, the relation:

0 = [∂ζ(B(Y ) · ζ)] · η −B(Y ) · η + λ
2
∂λ(B(Y ) · ζ) + λB(Y ) · ζ

= [∂ζ(B(Y ) · ζ)] · η + ∂λ[λ
2
(B(Y ) · ζ)]−B(Y ) · (η + λζ)

= [∂ζ(B(Y ) · ζ] · η + ∂λ[λ
2
(B(Y ) · ζ)]. (7.25)

Using equations (7.22) and (7.25), we have the following derivative:

[∂ζψ2(ζ, η)] · η =
∫
D

([∂ζ(B(Y ) · ζ)] · η)λ dλ dλ

= −
∫
D

d[λλ
2
(B(Y ) · ζ) dλ] = A1, (7.26)

A1 ≡ −
∫
∂D

[λB(λζ + η) · ζ dλ. (7.27)

Next consider the derivative (∂ζψ1) · η. If r > 0, we have, using the chain rule,
1
2eiθ(∂/∂r + ir−1∂/∂θ)B(ζ + reiθη) = [(∂ZB)(Z)] · η = (∂ζB)(Z) · η. (7.28)

Define an auxiliary function f by the formula:
rf(ζ, η, r, θ) = B(ζ + reiθη)−B(ζ). (7.29)

The function f is defined by equation (7.29), for r 6= 0 and by Taylor’s theorem
extends smoothly to the surface r = 0. Then we may rewrite equation (7.28), as
follows, valid everywhere:

1
2eiθ(∂rr + i∂θ)f(ζ, η, r, θ) = (∂ζB)(ζ + reiθη) · η. (7.30)

Using equations (7.8), (7.23) and (7.30), we find the following derivative:

[∂ζψ1(ζ, η)] · η = 2i
∫ π

−π

∫ 1

0
(∂ζ [B(ζ + reiθη) · η]) · ηe−iθ dr dθ

= i
∫ π

−π

∫ 1

0
(∂rr + i∂θ)[f(ζ, η, r, θ) · η] dr dθ

= i
∫ π

−π
[f(ζ, η, 1, θ) · η] dθ = i

∫ π

−π
[B(ζ + eiθη) · η −B(ζ) · η] dθ

= −2iπB(ζ) · η + i
∫ π

−π
[B(ζ + eiθη) · η] dθ

= −2iπB(ζ) · η − i
∫ π

−π
[B(e−iθζ + η) · ζ] dθ

= −2iπB(ζ) · η −
∫
∂D

[B(λζ + η) · ζ]λ dλ = −2iπB(ζ) · η +A1.

(7.31)
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So now, putting together equations (7.20), (7.26), (7.27) and (7.31), we have

[∂ζψ(ζ, η)] · η = [∂ζψ1(ζ, η)] · η − [∂ζψ2(ζ, η)] · η = −2iπB(ζ) · η. (7.32)

We may summarize as follows.

Lemma 7.7. We have the following expression for the derivative (∂ζα) · η:

[∂ζα(ζ, η)] · η = −2iπζB(ζ) · η. (7.33)

Proof . We use equations (7.18) and (7.32), together with lemma 7.3. �

Next we tackle the derivative of α(ζ, η) with respect to the variable η. By equation
(7.18) and lemma 7.3, we have the formula: ∂ηα = ζ∂ηψ, so it is only necessary to
calculate the quantity ∂ηψ. From equation (7.22), using the chain rule, we have

∂ηψ2(ζ, η) =
∫
D

[∂ηB(λζ + η) · ζ]λ dλ dλ

=
∫
D

[∂Y (B(Y ) · ζ)]λ dλ dλ =
∫
D

[(∂Y · ζ)B(Y )]λ dλ dλ

=
∫
D

[∂λB(Y )]λ dλ dλ

=
∫
∂D

B(λζ + η)λ dλ. (7.34)

Note that in going from the second to the third line of equation (7.34), we have used
that the form β is ∂-closed. Next from equation (7.23), using the chain rule, we have

∂ηψ1(ζ, η) = 2i
∫ π

−π

∫ 1

0
∂η[B(ζ + reiθη) · ηe−iθ] dr dθ

= 2i
∫ π

−π

∫ 1

0
[re−2iθ∂ZB(Z) · η +B(Z)e−iθ] dr dθ

= 2i
∫ π

−π

∫ 1

0
[re−2iθ(∂Z · η)(B(Z)) +B(Z)e−iθ] dr dθ

= i
∫ π

−π

∫ 1

0
[(∂rr + i∂θ)B(Z)e−iθ] dr dθ

= i
∫ π

−π
e−iθB(ζ + eiθη) dθ

= i
∫ π

−π
e−2iθB(e−iθζ + η) dθ

=
∫
∂D

B(λζ + η)λ dλ. (7.35)

Again in going from the second to the third line of equation (7.35), we have used
that the form β is ∂-closed.

Theorem 7.8. The functions ψ(ζ, η) and α(ζ, η) are holomorphic in the variable
η.
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Proof . From equations (7.20), (7.34) and (7.35), we find that the quantity ψ(ζ, η)
is holomorphic in the variable η. Then, using equation (7.18) and lemma 7.3, we see
that the quantity α(ζ, η) is also holomorphic in the variable η. �

Corollary 7.9. The function ψ(ζ, η) obeys the differential equation,

∂ζψ(ζ, η) = −2iπB(z). (7.36)

Proof . Differentiate both sides of equation (7.32) with respect to the variable η
and use theorem 7.8. �

Lemma 7.10. The quantity ψ(ζ, η) is homogeneous of degree zero in the variable
η, i.e. [∂ηψ(ζ, η)] · η = 0.

Proof . By equation (7.22), we have, using the chain rule,

[∂ηψ2(ζ, η)] · η =
∫
D

[∂η(B(λζ + η) · ζ) · η]λ dλ dλ

=
∫
D

[∂Y (B(Y ) · ζ) · (Y − λζ)]λ dλ dλ

=
∫
D

[(−2− λ∂λ)(B(Y ) · ζ)]λ dλ dλ

= −
∫
D

[∂λ(λ2B(Y ) · ζ)] dλ dλ =
∫
∂D

[λ2B(Y ) · ζ] dλ

= −
∫
∂D

[B(λζ + η) · ζ] dλ. (7.37)

By equation (7.23), we have

[∂ηψ1(ζ, η)] · η = 2i
∫ π

−π

∫ 1

0
[∂η(B(ζ + reiθη) · η)e−iθ] · η dr dθ

= i
∫ π

−π

∫ 1

0
[(∂rr − i∂θ)(e−iθ(B(ζ + reiθη))(η))] dr dθ

= i
∫ π

−π
[e−iθB(ζ + eiθη) · η] dθ = −i

∫ π

−π
[e−iθB(e−iθζ + η) · ζ] dθ

= −
∫
∂D

[B(λζ + η) · ζ] dλ. (7.38)

Putting equations (7.20), (7.37) and (7.38) together now gives the required result. �

Lemma 7.11. The quantity ψ(ζ, η) is homogeneous of degree zero in the variable
ζ, i.e. [∂ζψ(ζ, η)] · ζ = 0.

Proof . By equation (7.36), we have, [∂ζψ(ζ, η)] ·ζ = −2iπB(ζ) ·ζ = 0, as required.
�

Lemma 7.12. The quantity ψ(ζ, η) is homogeneous of degree minus two in the
variable ζ, i.e. [∂ζψ(ζ, η)] · ζ = −2ψ(ζ, η).
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Proof . First, we have the following derivative, using equations (7.8) and (7.22)
and the chain rule:

[∂ζψ2(ζ, η)] · ζ =
∫
D

[∂ζ(B(λζ + η) · ζ) · ζ]λ dλ dλ

=
∫
D

[∂Y (B(Y ) · ζ) · ζ]λ2 dλ dλ

=
∫
D

[∂λ(B(Y ) · ζ)]λ2 dλ dλ

= −2ψ2(ζ, η)−
∫
D

d[λ2B(Y ) · ζ dλ]

= −2ψ2(ζ, η)−
∫
∂D

[λ2B(λζ + η) · ζ] dλ

= −2ψ2(ζ, η) +
∫
∂D

B(λζ + η) · ζ dλ. (7.39)

Next we have the following derivative, using equation (7.23) and the chain rule:

[∂ζψ1(ζ, η)] · ζ = 2i
∫ π

−π

∫ 1

0
[∂ζ(B(ζ + reiθη) · η)e−iθ] · ζ dr dθ

= 2i
∫ π

−π

∫ 1

0
[∂Z(B(Z) · η)e−iθ] · ζ dr dθ

= 2i
∫ π

−π

∫ 1

0
[∂Z(B(Z) · η)e−iθ] · (Z − reiθη) dr dθ

= −2ψ1(ζ, η)− i
∫ π

−π

∫ 1

0

[(
∂

∂r
r − i

∂

∂θ

)
(e−iθB(Z) · η)

]
dr dθ

= −2ψ1(ζ, η)− i
∫ π

−π
[e−iθB(ζ + eiθη) · η] dθ

= −2ψ1(ζ, η) + i
∫ π

−π
[e−iθB(e−iθζ + η) · ζ] dθ

= −2ψ1(ζ, η) +
∫
∂D

[B(λζ + η) · ζ] dλ. (7.40)

Putting equations (7.20), (7.39) and (7.40) together now gives the required result. �

Corollary 7.13. The quantity α(ζ, η) is homogeneous of degrees (−1, 0, 0, 0) in
the variables (ζ, η, ζ, η).

Proof . The required result follows immediately from equation (7.18), together
with lemmas 7.3, 7.4, 7.10, 7.11 and 7.12. �

Equation (7.33) gives in particular the following formulas, using equation (7.17)
and corollary 7.13:

∂ρα(ζ + ρη, η) = −2iπ(ζ + ρη)B(ζ + ρη) · η, (7.41)

(∂α)(λζ + µη, η)θ = λ(∂α)(ζ + ρη, η) dρ
= −2iπλ(ζ + ρη)B(ζ + ρη) · η dρ dρ = −2iπξ(β). (7.42)
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Corollary 7.14. The form ρ(ζ,η)(β) ≡ (−2iπ)−1α(λζ + µη, η)θ satisfies for each
fixed (ζ, η) ∈ L(W ) the equation:

∂ρ(ζ,η)(β) = ξ(β)(ζ, η). (7.43)

Proof . Equation (7.43) follows immediately from equation (7.42). �

Next we are able to prove the following important corollary of theorem 7.8.

Corollary 7.15. The sheaf cohomology group H1(PC, Θ(−2)) vanishes.

Proof . Take the domain W to be all of PC. It is clear that W is admissible. For
each fixed ζ ∈ V ′C, ψ(ζ, η) is defined and holomorphic in η, for all η ∈ VC, such that
ζ ∧ η 6= 0. But by lemma 7.10, the function ψ(ζ, η) is homogeneous of degree zero in
η, so the function ψ(ζ, η) induces, for each fixed ζ ∈ VC, a holomorphic function on
the projective space PC, defined everywhere on PC, except at the point pC(ζ). But
every such holomorphic function is constant. Therefore, the quantity ψ(ζ, η) does not
depend on the variable η, so there exists a smooth function α(ζ), defined globally on
VC, such that α(ζ) = ψ(ζ, η), whenever (ζ, η) ∈ L(PC). Equation (7.36) now reads

∂ζα(ζ) = −2iπB(ζ). (7.44)

Furthermore, since the function ψ(ζ, η) is homogeneous of degrees (−2, 0) in the
variables (ζ, ζ), so is the function α(ζ).

Therefore, the function α(ζ) represents a smooth section of the sheaf Θ(−2), glob-
ally defined on the space PC. Then equation (7.44) shows that the (0, 1) form, β, on
the space PC, represented by the function B(ζ) is ∂-exact. Since this is true for any
such form β, the corollary is proved. �

Now we return to a general admissible domain W . Here we cannot expect that
ψ(ζ, η) is independent of η, since otherwise the cohomology group H1(W,Θ(−2))
would vanish, which is not true in general. However, we may instead just calculate
directly the derivative of ψ(ζ, η) with respect to η. From equation (7.22), we have

∂ηψ2(ζ, η) =
∫
D

[∂ηB(λζ + η) · ζ]λ dλ dλ

=
∫
D

[∂Y (B(Y ) · ζ)]λ dλ dλ = ∂ζ

∫
D

[B(λζ + η) · ζ] dλ dλ. (7.45)

Next we have, from equation (7.23),

∂ηψ1(ζ, η) = 2i
∫ π

−π

∫ 1

0
[∂η(B(ζ + reiθη))(η)e−iθ] dr dθ

= 2i
∫ π

−π

∫ 1

0
[∂Z(B(Z) · η)r dr dθ

= 2i∂ζ
∫ π

−π

∫ 1

0
[(B(ζ + reiθη) · η)r dr dθ

= ∂ζ

∫
D

[B(ζ + λη) · η] dλ dλ. (7.46)

So we have the following lemma.
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Lemma 7.16. The quantities ψ(ζ, η) and φ(β)(ζ, η) are related by the formula,
valid for all (ζ, η) ∈ L(W ):

∂ηψ(ζ, η) = ∂ζφ(β)(ζ, η). (7.47)

Proof . Combine equations (7.10), (7.20), (7.45) and (7.46). This gives the result
immediately. �

Corollary 7.17. If φ(β) vanishes identically, then the form B is ∂-exact.

Proof . When φ(β) = 0, by equation (7.47) and by theorem 7.8, the quantity
ψ(ζ, η) has vanishing derivatives with respect to the variables η and η. Therefore, it
is locally constant in the variable η, for each fixed ζ. By definition of admissibility
of the domain W , it then follows that the quantity ψ(ζ, η) is independent of η,
so there exists a function α(ζ), globally defined on W , such that α(ζ) = ψ(ζ, η),
whenever (ζ, η) ∈ L(W ). The rest of the proof follows exactly the argument of
corollary 7.15. �

We have now established the following theorem, which combines many of the
various results of this section.

Theorem 7.18. Let β be a smooth ∂-closed (0, 1) form with values in Θ(−2),
defined on an admissible open set W in PC. Then the form β is represented by
a smooth function, B(υ), taking values in the space V ∗C , globally defined on the
space H(W ), such that the function B(υ) is homogeneous of degrees (−2,−1) in the
variables (υ, υ) and obeys the equations B(υ) · υ = 0 and ∂υ ∧ B(υ) = 0. Define
the functions φ(β) and ψ(β) on the space L(W ), by the formulas, valid for any
(ζ, η) ∈ L(W ):

φ(β)(ζ, η) ≡ (2iπ)−1
∫
D

[B(ζ + λη) · η −B(λζ + η) · ζ] dλ dλ, (7.48)

ψ(β)(ζ, η) ≡ −π−1
∫ π

−π

∫ 1

0
[B(ζ + reiθη) + rB(rζ + eiθη)] · ηe−iθ dr dθ. (7.49)

Then the quantities φ(β)(ζ, η) and ψ(β)(ζ, η) are each homogeneous in the variables
(ζ, η, ζ, η), of degrees (−1,−1, 0, 0) and (−2, 0, 0, 0), respectively.

Also, we have the relations, valid for any (ζ, η) ∈ L(W ):
(i) φ(β)(ζ, η) = −φ(β)(η, ζ);
(ii) φ(β)(ζ, η) is holomorphic in the variables ζ and η;
(iii) ψ(β)(ζ, η) is holomorphic in the variable η;
(iv) ∂ζψ(β)(ζ, η) = B(ζ);
(v) ∂ηψ(β)(ζ, η) = ∂ζφ(β)(ζ, η).
Finally, the form β is exact if and only if φ(β) vanishes, if and only if there exists

a unique smooth function α(β), defined globally on W , taking values in Θ(−2), such
that ∂α(β) = β and if the function α(β) is represented by a smooth function, α(β)(ζ),
homogeneous of degrees (−2, 0) in the variables (ζ, ζ), defined on H(W ), then we
have the relation, valid for all (ζ, η) ∈ L(W ):

(vi) α(β)(z) = ψ(β)(ζ, η).
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Proof . Equation (7.48) is a rescaling by a factor of (−2iπ)−1 of equation (7.10).
Equation (7.49) is simply a rewrite (and rescaling) of the integrals of equations

(7.22) and (7.23), using polar coordinates for each integral and combining them to
give the quantity ψ(ζ, η) according to equation (7.20).

Property (i) is equation (7.11). Property (ii) is lemma 7.3. Property (iii) is theo-
rem 7.8. Property (iv) is corollary 7.9. Property (v) is lemma 7.16.

If the function φ(β) vanishes, then the ∂-exactness of β and the existence of the
function α(β), obeying property (vi) are established in corollary 7.17. Conversely,
if the form β is ∂-exact, then by lemma 7.1, the function φ(β) vanishes. Also if
the function α(β) exists obeying property (vi), then by property (iv), the form β is
∂-exact and ∂α(β) = β. �

Next we wish to consider the analogue of theorem 7.18 for the case of the domain
PC − P . Since this domain is not admissible, we have to do a little more work.

Corollary 7.19. Let β be a smooth ∂-closed (0, 1) form with values in the sheaf
Θ(−2), defined globally on the space PC − P . So the form β is represented by a
smooth function, B(υ), which takes values in the space V ∗C , is defined globally on
the space H and homogeneous of degrees (−2,−1) in the variables (υ, υ) and which
obeys the equations: B(υ) · υ = 0 and ∂υ ∧B(υ) = 0.

Define the smooth function ψ(β) on the space L(PC − P ), by the formula, valid
for any (ζ, η) ∈ L(PC − P ):

ψ(β)(ζ, η) ≡ −π−1
∫ π

−π

∫ 1

0
[B(ζ + reiθη) + rB(rζ + eiθη)] · ηe−iθ dr dθ. (7.50)

Then we have the relations, valid for any (ζ, η) ∈ L(PC − P ):
(i) ∂ζψ(β)(ζ, η) = B(ζ);
(ii) ∂ηψ(β)(ζ, η) = ∂ηψ(β)(ζ, η) = 0.
Also, there exists a unique smooth function α(β), defined globally on PC − P ,

taking values in Θ(−2), such that ∂(α(β)) = β and if α(β) is represented by a
smooth function, α(β)(ζ, ζ), homogeneous of degrees (−2, 0) in the pair of variables
(ζ, ζ), defined on H, then we have the relation, valid for all (ζ, η) ∈ L(PC − P ):

(iii) α(β)(ζ) = ψ(β)(ζ, η).

Proof . All the definitions and results of this section apply to this domain, up to
and including lemma 7.16. Let β be a smooth ∂-closed (0, 1) form with values in
Θ(−2), defined globally on PC − P . By corollary 6.7, the form β is ∂-exact and a
unique smooth function α exists, defined on PC − P , taking values in Θ(−2), such
that ∂α = β.

Let W be an admissible open subset of PC − P . Then theorem 7.18 applies to the
restriction of β to W . By the uniqueness of the quantity α(β) of theorem 7.18, the
function α(β) must be just the restriction of the function α to W . Since every point
and every projective line in PC−P belong to some admissible open subset W of the
space PC−P , we may read off the requisite formulas directly from theorem 7.18. �

8. The forward direction: construction of Φ(f) given f

Let a function f ∈ C∞(V,−2) be given. Multiply f by the V -valued function z. The
resulting V -valued function zf is homogeneous of degree −1. We regard the quantity
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zf as taking values in the space Ω1. Fix x ∈M and consider x∗(zf), the restriction
of the function zf to the space x′. We apply the invariant Hilbert transform, Hx, of
§ 5 to the function x ∧ (zf). By theorem 5.15 there are unique Ω1

C-valued functions
f±(x, z), globally defined on the spaces S±, fibre holomorphic and homogeneous of
degree −1 in the variable z, such that these functions extend smoothly to the domains
S± ∪ S0 and obey the relations, for all (x, v) ∈ S:

f+(x, v)− f−(x, v) = x∗(zf)(v), (8.1)
f+(x, v) + f−(x, v) = −iHx(x∗(zf))(v). (8.2)

By equation (8.1), we have: v ∧ f+(x, v) = v ∧ f−(x, v), for each (x, v) ∈ S, since
v ∧ x∗(zf)(v) = x∗((z ∧ z)f)(v) = 0. Therefore, there exists a smooth function
g(x, ζ), globally defined on the space SC, taking values in Ω2

C, fibre holomorphic
and homogeneous of degree zero, such that the restrictions of the function g to the
domains S± ∪ S0 agree with each of the quantities ζ ∧ f±(x, z) on their respective
domains. By Liouville’s theorem, for each fixed x ∈M , the function g(x, z) must be
independent of the variable z ∈ x′C. So the function g is the pullback to the space SC
of a smooth function, h, defined on the space M , i.e. we have h(x) = g(x, ζ), for all
(x, ζ) ∈ SC. By equation (8.2), we have the equation: 2h(x) = −iv ∧Hx(x∗(zf))(v),
for each (x, v) ∈ S. In particular, the quantity v ∧Hx(x∗(zf))(v) is independent of
v ∈ x′, for any x ∈M ; since it is real it represents an element of Ω2. As x ∈M varies,
we obtain a smooth function Φ(f), globally defined on the space M and taking values
in Ω2, such that for any (x, v) ∈ S, we have the relation Φ(f)(x) = v∧Hx(x∗(zf))(v).
Note that we have v ∧ Φ(f)(x) = 0, whenever v ∈ x ∈M .

We have proved:

Lemma 8.1. Given any f ∈ C∞(V,−2), there exists a function

Φ(f) ∈ C∞(M,Ω2),

such that, for any (x, v) ∈ S:

Φ(f)(x) = v ∧Hx(x∗(zf))(v). (8.3)

The function Φ(f) is given in terms of the functions f± by the equations, valid for
all (x, z) ∈ S± ∪ S0:

Φ(f)(x) = 2iζ ∧ f±(x, ζ). (8.4)

Furthermore, we have v ∧ Φ(f)(x) = 0, for any v ∈ x ∈M .

We can derive an explicit formula for the function Φ(f) as follows.
First, by lemma 5.3, there is a unique function h(f) ∈ C∞((x′)2,End(x)), such

that, for all (u, v) ∈ (x′)2:

h(f)(u, v)(u) = −vf(v), h(f)(u, v)(v) = −uf(u). (8.5)

By lemma 5.4, the one form h(f)(u, v)(du) is closed, for each fixed v ∈ x′. By defini-
tion 5.6, we have the formula: Hx(x∗(zf))(v) = (2π)−1

∫
x
[h(f)(u, v)(du)]. Therefore,

by equation (8.3), we obtain the explicit formula, valid for any v ∈ x′ and any x ∈M :

Φ(f)(x) = (2π)−1
∫
x

[v ∧ h(f)(u, v)(du)]. (8.6)
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Now consider the quantity v ∧ h(f)(u, v) − f(u)(u ∧ δ). If we act on the vector u,
then, using equation (8.5), we find

[v ∧ h(f)(u, v)− f(u)u ∧ δ](u) = −(v ∧ v)f(v)− f(u)(u ∧ u) = 0. (8.7)

If we act on the vector v, then, using equation (8.5), we get

[v ∧ h(f)(u, v)− f(u)u ∧ δ](v) = −(v ∧ u)f(u)− f(u)(u ∧ v) = 0. (8.8)

By equations (8.7) and (8.8), we have v ∧ h(f)(u, v)− f(u)(u∧ δ) = 0, whenever the
vectors u and v are linearly independent, so whenever the quantity u∧ v is non-zero.
So, by continuity, we have, for all (u, v) ∈ (x′)2,

v ∧ h(f)(u, v) = f(u)(u ∧ δ). (8.9)

Substituting equation (8.9) into equation (8.6), we get

Φ(f)(x) = (2π)−1
∫
x

[f(u)u ∧ du)]. (8.10)

Comparing equations (8.10) and (4.1), we have exact agreement. So we have
proved:

Lemma 8.2. The function Φ(f) defined by equation (8.3) agrees with the Radon
transform of the function f , as given by definition 4.3.

Now the derivatives FC(f±) take values in V ∗C ⊗ VC ⊗ Ω′(C), where FC is the
operator E − δC. After identifying VC with Ω1

C, we may regard FC(g±) as having
values in V ∗C ⊗ VC ⊗ VC. Then skew symmetrization gives quantities ∧C(FC(f±))
taking values in Ω1(V ∗C )⊗Ω2

C.

Lemma 8.3. The functions f±, restricted to the space S, obey the differential
equations: ∧C(FC(f±)) = 0.

Proof . Apply the operator FC to both sides of equation (8.1) and take the skew
part. We find the relation ∧C(FC(x∗(zf))) = x∗(∧(F (zf))) = 0, since we have:
∧(F (zf)) = ∧(F (z))f + (F (f)) ∧ z = (E(f)) ∧ z = (∂f)⊗ z ∧ z = 0, using the facts
that δ(f) = 0, so F (f) = E(f) = (∂f)⊗ z and E ⊗ (z) = z⊗ ∂ ⊗ (z) = z⊗ δ = δ(z),
so F (z) = 0.

This gives the formula, valid on the space S: ∧C(FC(f+)) = ∧C(FC(f−)). But each
of the quantities ∧C(FC(f±)) is fibre holomorphic and homogeneous of degree minus
one, on its domain. Then the relation ∧C(FC(f+)) = ∧C(FC(f−)) on the space S,
shows that the quantities ∧C(FC(f±))(x, z), patch together to give a global fibre
holomorphic function on SC, homogeneous of degree minus one, which vanishes by
Liouville’s theorem, as required for the lemma. �

Switching to abstract indices, equation (8.1) reads

vαf(x, v) = fα+(x, v)− fα−(x, v), (8.11)

valid for all (x, v) ∈ S.
The result of lemma 8.3 then reads

E[β
γ f

α]
± + δ[β

γ f
α]
± = 0. (8.12)
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Accordingly, we have the relations, for unique symmetric (complex) tensor fields
fαβ±γ ,

Eβγ f
α
± = δαγ f

β
± + fαβ±γ . (8.13)

Applying the operator Eδε to equation (8.13) and taking the commutator, using the
fact that the derivative operatorEαβ obeys the commutation relation:EδεE

β
γ−EβγEδε =

δβε E
δ
γ − δδγEβε , we obtain the following identity:

Eδε f
αβ
±γ − Eβγ fαδ±ε = δαε f

βδ
±γ − δαγ fβδ±ε + δβε f

αδ
±γ − δδγfαβ±ε . (8.14)

Equation (8.14) may be solved directly for the derivatives Eδε f
αβ
±γ :

Eδε f
αβ
±γ = δαε f

βδ
±γ + δβε f

αδ
±γ + fαβδ±γε . (8.15)

In equation (8.15), the tensors fαβδ±γε are totally symmetric. Combining equations
(8.13) and (8.15), we find the following formula for the second derivatives of the
quantities fα±:

EδεE
β
γ f

α
± = δαγE

δ
ε f

β
± + Eδε f

αβ
±γ = δαγ δ

β
ε f

δ
± + δαγ f

βδ
±ε + δαε f

βδ
±γ + δβε f

αδ
±γ + fαβδ±γε . (8.16)

Skew symmetrizing equation (8.16) and using equation (8.13) again, we get the simple
relation:

E
[δ
[εE

β]
γ]f

α
± = δ

[β
[ε E

δ]
γ]f

α
±. (8.17)

Using these relations, we have the following second derivative formula:

E
[δ
[εE

β]
γ] (ζ

[ζf
α]
± ) = δ

[β
[ε E

δ]
γ](ζ

[ζf
α]
± )− (δ[β

[ε E
δ]
γ]ζ

[ζ)fα]
± + (E[δ

[εE
β]
γ]ζ

[ζ)fα]
± + 2ζ [βE

δ]
[ε δ

[ζ
γ]f

α]
±

= δ
[β
[ε E

δ]
γ](ζ

[ζf
α]
± )− δ[β

[ε ζ
δ]δ

[ζ
γ]f

α]
± − δ[δ

[ε ζ
β]δ

[ζ
γ]f

α]
± + 2ζ [βE

δ]
[ε δ

[ζ
γ]f

α]
±

= δ
[β
[ε E

δ]
γ](ζ

[ζf
α]
± ) + 2ζ [βE

δ]
[ε δ

[ζ
γ]f

α]
±

= δ
[β
[ε E

δ]
γ](ζ

[ζf
α]
± ) + 2E[α

[ε δ
ζ]
γ]f

[δ
± )ζβ] + 2ζ [βf

δ]
± δ

[α
[ε δ

ζ]
γ] − 2f [α

± δ
ζ]
[γδ

[δ
ε] ζ

β]

= δ
[β
[ε E

δ]
γ](ζ

[ζf
α]
± ) + 2E[α

[ε δ
ζ]
γ](f

[δ
± ζ

β])− 2ζ [αδ
ζ]
[γ(f [δ

± δ
β]
ε] )

+ 2ζ [βf
δ]
± δ

[α
[ε δ

ζ]
γ] − 2f [α

± δ
ζ]
[γδ

[δ
ε] ζ

β ]

= δ
[β
[ε E

δ]
γ](ζ

[ζf
α]
± ) + 2E[α

[ε δ
ζ]
γ](f

[δ
± ζ

β]) + 2δ[α
[ε δ

ζ]
γ]ζ

[βf
δ]
±

+ 1
2(−fα±δζ[γδδε]ζβ + fζ±δ

α
[γδ

δ
ε]ζ

β − ζαδζ[γfδ±δβε] + ζζδα[γf
δ
±δ

β
ε])

− 1
2(−fα±δζ[γδβε]ζδ + fζ±δ

α
[γδ

β
ε]ζ

δ − ζαδζ[γfβ±δδε] + ζζδα[γf
β
±δ

δ
ε])

= δ
[β
[γE

δ
ε]](ζ

[αf
ζ]
± )− 2E[α

[γ δ
ζ]
ε] (ζ

[βf
δ]
± )− 2δα[γδ

ζ
ε]ζ

[βf
δ]
±

− δδ[γδζε]ζ [αf
β]
± + δα[γδ

δ
ε]ζ

[βf
ζ]
± + δβ[γδ

ζ
ε]ζ

[αf
δ]
± − δα[γδβε]ζ [δf

ζ]
± . (8.18)

Using equation (8.4), we may rewrite equation (8.18) in terms of the field Φ(f), as
follows:

0 = E
[δ
[εE

β]
γ]Φ(f)ζα − δ[β

[γE
δ]
ε]Φ(f)αζ + 2δ[α

[γE
ζ]
ε]Φ(f)βδ + 2δα[γδ

ζ
ε]Φ(f)βδ

+ δζ[γδ
δ
ε]Φ(f)βα − δα[γδδε]Φ(f)βζ − δζ[γδβε]Φ(f)δα + δα[γδ

β
ε]Φ(f)δζ

= E
[δ
[εE

β]
γ]Φ(f)ζα + δ

[δ
[εE

β]
γ]Φ(f)ζα + 2δ[α

[γE
ζ]
ε]Φ(f)βδ

+ 2δα[γδ
ζ
ε]Φ(f)βδ + 4δ[β

[γΦ(f)δ][αδζ]ε] . (8.19)
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Also, using equation (8.12), we have the first derivative equation:

E[β
γ ζ

δf
α]
± = −2δ[β

γ ζ
δf
α]
± . (8.20)

Writing equation (8.20) in terms of the quantity Φ(f)αβ, we have the equation:

E
[α
δ Φ(f)βγ] + 2δ[α

δ Φ(f)βγ] = 0. (8.21)

Using equation (8.21), we may rewrite equation (8.19) as follows:

0 = E
[δ
[εE

β]
γ]Φ(f)ζα + δ

[δ
[εE

β]
γ]Φ(f)ζα + 4E[δ

[εΦ(f)β][ζδ
α]
γ]

+ 8δ[δ
[εΦ(f)β][ζδ

α]
γ] − 2δα[γδ

ζ
ε]Φ(f)βδ + 4δ[β

[γΦ(f)δ][αδζ]ε]

= E
[δ
[εE

β]
γ]Φ(f)ζα + 4E[δ

[εΦ(f)β][ζδ
α]
γ] + δ

[δ
[εE

β]
γ]Φ(f)ζα

+ 4δ[δ
[εΦ(f)β][ζδ

α]
γ] + 2δ[ζ

[ε δ
α]
γ]Φ(f)δβ . (8.22)

Comparing equations (8.21) and (8.22) with equations (4.8) and (4.9) above, we have
exact agreement.

We have proved:

Lemma 8.4. The field Φ(f) belongs to the space Z(M).

Now suppose that the field Φ(f) is identically zero. Then we have the formulas
ζ∧f±(x, ζ) = 0, which immediately gives the relations f±(x, z) = ζk±(x, ζ), for some
functions k±, which are defined for all (x, ζ) ∈ S± ∪ S0 and are fibre holomorphic
and homogeneous of degree minus two. Equation (8.12) gives the following relation:

∧C[ζ ⊗ E(k±)] = 0. (8.23)

Next, pull back the functions k± (restricted to the domains S±) to the space H,
along the maps s±: so put k±s± ≡ g±. Then each of the functions g± is globally
defined on the space H. On the space H, the derivatives Eβγ g± may be expressed as
E(g±) = ζ ⊗ ∂ζg± + ζ ⊗ ∂ζg±. If ζ ∈ H, we have ζ ∧ ζ 6= 0, so equation (8.23) gives
the simple formula:

∂ζg± = 0. (8.24)

Thus the quantities g± are holomorphic on H. Since they are homogeneous of degree
minus two, they represent global holomorphic sections of the sheaf Θ(−2) over the
space PC − P , which is the projective image, pC(H) of the space H. For any y
in H there is a projective line through pC(y) lying entirely in the space PC − P .
Since the functions g±, restricted to any such line represent holomorphic globally
defined sections of Θ(−2) and since the only such section vanishes identically, by
Liouville’s theorem, we must have g± vanishing on the line. In particular, we have
g±(y) = 0. Since y is arbitrary in H, the functions g± must vanish identically. Hence
the functions k± and f± must vanish identically. By equation (8.1), the function f
must also vanish identically. We have proved:

Theorem 8.5. The Radon transform Φ is an injection.
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9. The backward direction: construction of the function f
given its Radon transform Φ(f)

Given f ∈ C∞(V,−2), we may obtain its Radon transform Φ(f) ∈ Z(M). The aim
of this section is to recover the function f , from the function Φ(f). By theorem 8.5,
if Φ(f) is known, then f is uniquely determined.

From § 8, we know that unique VC-valued functions f±(x, ζ) exist, homogeneous of
degrees (−1, 0) in the variables (ζ, ζ), defined and fibre holomorphic on the domains
S± ∪ S0 and such that we have the relations:

f+(x, v)− f−(x, v) = vf(v), (9.1)

valid for all v ∈ x′ and all x ∈M ,

Φ(f)(x) = 2iζ ∧ f±(x, ζ), (9.2)

valid for all (x, ζ) ∈ S± ∪ S0.
Also, by corollary 5.16, we have f−(x, ζ) = −f+(x, ζ), for all (x, ζ) ∈ S− ∪ S0.

This relation in particular entails that for all x ∈ M and all v ∈ x′, we have
f−(x, v) = −f+(x, v). Hence either of the functions f± determines the other com-
pletely and from equation (9.1), we have the following formulas, valid for all v ∈ x′
and all x ∈M :

vf(v) = ±2 Re(f±(x, v)). (9.3)

Recall that X ∧ v = 0, for any v ∈ m(X) and any X ∈ N . Then equation (9.1)
gives immediately the following relation: X ∧ f+(m(X), v) = X ∧ f−(m(X), v), for
any X ∈ N and any v ∈ m(X)′. This relation, combined with the homogeneity of
the functions f±, shows in particular that the pair of functions X ∧ f±(m(X), ζ),
for each fixed X ∈ N , patch together to give a single global holomorphic function
defined for all ζ ∈ m(X)′C, which is homogeneous of degree minus one in the variable
ζ. By Liouville’s theorem such a function must be zero. So we have the key relations,
valid for all (X, ζ), such that (m(X), ζ) ∈ S± ∪ S0:

X ∧ f±(m(X), ζ) = 0. (9.4)

Now we may pull back the functions f± restricted to the domains S± along
the maps s± to give VC-valued functions, g±(ζ), defined for all ζ ∈ H. (So we
have g± ≡ f±s±.) Recall that if ζ ∈ H, then s±(ζ) = (x±(ζ), ζ), where we have
x±(ζ) = m(X±(ζ)) and X±(ζ) = ±2ζ+ ∧ ζ− = ±iζ ∧ ζ . Then equation (9.4) may
be rewritten in terms of the functions g± as follows, valid for all ζ ∈ H:

ζ ∧ ζ ∧ g±(ζ) = 0. (9.5)

Also equation (9.3) may be rewritten directly in terms of the functions g± as follows;
for any fixed v ∈ V ′, we have

vf(v) = ±2 lim
ζ→v;ζ∈H,v∧ζ∧ζ=0

Re(g±(ζ)) = ±2 lim
t→0

Re(g±(v + itw)). (9.6)

In the second limit, the variable t is real and the vector w ∈ V ′ must be linearly
independent of the vector v.

From equation (9.5), since by definition ζ ∧ ζ 6= 0, whenever ζ ∈ H, we may
decompose the functions g± as follows:

g±(ζ) = ζχ±(ζ) + ζφ±(ζ). (9.7)
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In equation (9.7), the smooth scalar functions χ± and φ± are globally defined on the
space H and are uniquely determined by the functions g±. Note that none of the
functions χ± nor φ±, if regarded as functions on the spaces S± (via the maps s±),
can be expected to have a smooth extension to the space S±∪S0. Also the functions
χ± have homogeneity (−2, 0), whereas the functions φ± have homogeneity (−1,−1),
in the variables (ζ, ζ).

Combining equations (9.2) and (9.7), we find the relations, valid for all ζ ∈ H:
2iζ ∧ ζφ±(ζ) = Φ(f)(x±(ζ)). (9.8)

By equation (9.7) the functions φ± are directly determined from the given field Φ(f).
So if a method is found to determine the functions χ± directly from the field Φ(f),
then the functions g± will be completely known from equation (9.7). Via the maps
s±, the functions f± will be known on the domains S±. By continuity the extensions
of the functions f± to their full domains S± ∪ S0 will be known. In particular, the
quantities f±(x, v) will be known for any (x, v) ∈ S and then the function f will
be recovered from equation (9.1). Equivalently, once the functions g± have been
determined, we may recover the function f by using equation (9.6).

Note that from equation (9.8), since the quantity ζ ∧ ζ is killed by the differential
operator ∂ζ · ζ, we obtain the relations:

(∂ζφ±) · ζ = 0. (9.9)

Lemma 9.1. Let β±(ζ) ≡ (∂ζφ±(ζ)) · dζ, for any ζ ∈ H. Then the (0, 1) forms
β± are smooth, ∂-closed and globally defined on the space H. Further they represent
smooth ∂-closed (0, 1) forms on PC − P , with values in the sheaf Θ(−2).

Proof . Since Φ(f) ∈ Z(M), the forms β± are ∂-closed by equation (9.8) and
lemma 4.9 and are clearly globally defined and smooth on the space H. The functions
φ± are homogeneous of degrees (−1,−1) in the variables (ζ, ζ) and since they also
obey the equation (9.9), the forms β± are homogeneous of degrees (−2, 0) in the
variables (ζ, ζ), so represent ∂-closed forms on the space pC(H) = PC − P with
coefficients in the sheaf Θ(−2). �

Lemma 8.3 connects the field Φ(f) and the functions χ±. From equation (8.12),
we have

E[β
γ f

α]
± + δ[β

γ f
α]
± = 0. (9.10)

Pulling back equation (9.10) along the maps s± gives the following equation:

E[β
γ g

α]
± + δ[β

γ g
α]
± = 0. (9.11)

Using equation (9.7), we may rewrite equation (9.11) as follows:

0 = E[β
γ (ζα]χ± + ζ

α]
φ±) + δ[β

γ (ζα]χ± + ζ
α]
φ±). (9.12)

Acting on functions of the variable ζ ∈ H, we have Eαβ = ζα∂β + ζ
α
∂β . Using this

relation, equation (9.12) becomes

0 = ζ [β∂γ(ζα]χ± + ζ
α]
φ±) + ζ

[β
∂γ(ζα]χ± + ζ

α]
φ±) + δ[β

γ (ζα]χ± + ζ
α]
φ±)

= χ±ζ [β∂γζ
α] + ζ

[α
ζβ]∂γφ± + ζ

[β
ζα]∂γχ± + φ±ζ

[β
∂γζ

α]
+ δ[β

γ (ζα]χ± + ζ
α]
φ±)

= χ±ζ [βδα]
γ + ζ

[α
ζβ]∂γφ± + ζ

[β
ζα]∂γχ± + φ±ζ

[β
δα]
γ + δ[β

γ ζ
α]χ± + δ[β

γ ζ
α]
φ±

= ζ
[α
ζβ](∂γφ± − ∂γχ±). (9.13)
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Since ζ ∧ ζ 6= 0, for any ζ ∈ H, we deduce from equation (9.13) the following key
equation for the quantities χ±:

∂αχ± = ∂αφ±. (9.14)

We may summarize the above discussion as follows:

Theorem 9.2. Let f ∈ C∞(V,−2) be given and consider its Radon transform
Φ(f) ∈ Z(M).

Define the smooth real-valued functions φ± on the space H, by the following
formula, valid for any z ∈ H:

2iζ ∧ ζφ±(ζ) ≡ Φ(f)(x± (ζ)). (9.15)

Consider the following differential equations, for smooth complex-valued functions
χ±, globally defined on the space H and homogeneous of degrees (−2, 0) in the
variables (ζ, ζ).

∂αχ± = ∂αφ±. (9.16)

Then the required solutions χ± exist, are unique and are expressible directly in terms
of certain integrals involving the functions φ±. Specifically we have the following
formulas, valid for any (ζ, η) ∈ L(PC − P ):

χ±(ζ) ≡ −π−1
∫ π

−π

∫ 1

0
ηα[∂αφ±(ζ + reiθη) + r∂αφ±(rζ + eiθη)]e−iθ dr dθ. (9.17)

Also let VC-valued functions g± be defined, globally on the space H, by the formulas,
valid for any ζ ∈ H:

g±(ζ) = ζχ±(ζ) + ζφ±(ζ). (9.18)

Next let functions f±, taking values in VC, globally defined on the spaces S± be
defined by the formulas:

g± = f±s±. (9.19)

Then the functions f± are fibre holomorphic and homogeneous of degree minus one
in the variable ζ and possess smooth extensions (still called f±) to the domains
S± ∪ S0. Finally, the function f may be recovered from the formula, valid for any
v ∈ x′ and any x ∈M :

f+(x, v)− f−(x, v) = vf(v). (9.20)

Proof . We know that the functions f± and g± obeying equations (9.19) and (9.20)
and the required holomorphy and homogeneity conditions exist and are unique. Fur-
ther, the functions g± have a unique decomposition of the form of equation (9.18)
and the components of the decomposition χ± and φ± obey the equations (9.15) and
(9.16). Thus to prove the theorem, we just need to verify that equations (9.15) and
(9.16) are by themselves sufficient to determine the functions χ± and φ± uniquely.
For the functions φ± this is immediate from equation (9.15). That the functions
φ± have the correct homogeneity also follows immediately from equation (9.15).
Next, by lemma 9.1, the (0, 1) forms β± ≡ (∂ζφ±) · dζ represent ∂-closed (0, 1)
forms with coefficients in the sheaf Θ(−2), globally defined on the space PC − P .
By corollary 6.7, there exist unique sections χ±, of Θ(−2), globally defined on the
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space PC − P , such that ∂χ± = β±. Interpreted as functions on the space H, the
quantities χ± are smooth and globally defined, have the required homogeneity and
obey the required equation, equation (9.16). Uniqueness of the functions χ± on H
is equivalent to their uniqueness on the space PC −P , so holds. So the functions χ±
and φ± with the required properties exist and are indeed uniquely determined just
from the equations (9.15) and (9.16). Finally, the integral expressions of equation
(9.17), giving the functions χ± in terms of the functions φ± are obtained directly
from corollary 7.19. �

Example 9.3. Consider the prototypical case discussed in the introduction. For
this case the functions φ± are given by the following formulas, valid for any ζ ∈ H:

φ±(ζ) ≡ ±(2ρ)−1, ρ ≡ (b2 − aa)1/2,

b ≡ g(ζ, ζ), a ≡ g(ζ, ζ), a ≡ g(ζ, ζ).

}
(9.21)

Here g(·, ·) is a complex symmetric bilinear form on the complex vector space VC,
which is real and definite when restricted to the real space V .

Note that, via the Cauchy–Schwarz inequality, we have ρ > 0 and ρ = 0 if and only
if ζ∧ζ = 0, so we have ρ > 0 on the space H and the functions f± are globally defined
and smooth on the space H, as required. Also the functions f± have homogeneity
degree (−1,−1) in the variables (ζ, ζ).

Next we have the following derivatives:

±2ρ3∂ζφ± = ag(ζ, ·)− bg(ζ, ·); (9.22)

±2ρ5∂ζ ⊗ ∂ζφ± = 3[ag(ζ, ·)− bg(ζ, ·)]⊗ [ag(ζ, ·)− bg(ζ, ·)]
+ ρ2[2g(ζ, ·)⊗ g(ζ, ·)− g(ζ, ·)⊗ g(ζ, ·)− bg(·, ·)]; (9.23)

±2ρ5∂ζ ∧ ∂ζφ± = 3[ag(ζ, ·)− bg(ζ, ·)] ∧ [ag(ζ, ·)− bg(ζ, ·)] + 3ρ2g(ζ, ·) ∧ g(ζ, ·)
= 3(aa− b2 + ρ2)g(ζ, ·) ∧ g(ζ, ·) = 0. (9.24)

So the functions φ± obey the required field equations.
Next equation (9.16) gives the following differential equations, determining the

quantities χ±:

±2ρ3∂ζχ±(ζ) = ag(ζ, ·)− bg(ζ, ·). (9.25)

Solving equation (9.25) gives the following expression for the functions χ±:

±2χ± = −aρ−1(b+ ρ)−1. (9.26)

Note that b > 0 if ζ 6= 0, so that the functions χ± are well defined if ζ ∧ ζ 6= 0, so
the functions χ± are smooth and globally defined on the space H.

One computes the quantities ±∂ζχ± as follows:

±2(b+ ρ)2ρ3∂ζχ± = 1
2a(b+ ρ)∂ζρ

2 − ρ2(b+ ρ)∂ζa+ a(ρ2∂ζb+ 1
2ρ∂ζρ

2)

= −a(b+ 2ρ)[ag(ζ, ·)− bg(ζ, ·)]− 2ρ2(b+ ρ)g(ζ, ·) + aρ2g(ζ, ·)
= ag(ζ, ·)(b2 + ρ2 + 2bρ)− bg(ζ, ·)[aa+ 2ρ2 + 2bρ]

= [ag(ζ, ·)− bg(ζ, ·)](b+ ρ)2. (9.27)

So equation (9.25) is satisfied, as required.
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Next by equation (9.18), we have the following expressions for the functions g±,
valid for any ζ ∈ H:

g±(ζ) = ζχ±(ζ) + ζφ±(ζ) = ±(2ρ)−1(ζ − ζa(b+ ρ)−1). (9.28)

Put ζ = v+ itw, where v and w are real and linearly independent and t is real and
non-zero. Also put p ≡ g(v, v), q ≡ g(v, w), r ≡ g(w,w) and s ≡√(pr − q2). Then
s > 0, by the Cauchy–Schwarz inequality.

We have a = p+ 2itq − t2r, b = p+ t2r and

ρ2 = (p+ t2r)2 − (p+ 2itq − t2r)(p− 2itq − t2r) = 4t2s2.

So we find that ρ = 2|t|s. Put ε(t) ≡ t/|t|, for any real non-zero t.
Inserting these relations into equation (9.28), we get

±2g±(v + itw) = |t|−1[2s(p+ 2|t|s+ t2r)]−1[v(b+ ρ− a)− itw(b+ ρ+ a)]

= [s(p+ 2|t|s+ t2r)]−1

× [v(s+ iqε(t) + |t|r)− iw(pε(t) + t(s− iε(t)q)]. (9.29)

We take the real part of equation (9.29) and then take the limit as t → 0. Using
equation (9.6), this gives the following relation, valid for any v ∈ V :

vf(v) = vp−1 = vg(v, v)−1. (9.30)

So we have f(v) = g(v, v)−1, for any v ∈ V and we find that the function f coincides
with the function fg, of the introduction, as expected.

Note that by equation (9.8), we have the relation,

Φ(fg)[m(ζ+ ∧ ζ−)] = ρ−1(iζ ∧ ζ). (9.31)

Putting ζ = v + iw, with v ∈ V and w ∈ V , this gives the formula,

Φ(fg)(m(v ∧ w)) = 2ρ−1(v ∧ w). (9.32)

Also we have the relation,

ρ2 = b2 − aa = [g(v, v) + g(w,w)]2 − [g(v, v)− g(w,w)]2 − 4g(v, w)2

= 4[g(v, v)g(w,w)− g(v, w)2]. (9.33)

So we get the following formulas, valid for all linearly independent vectors v and w
in the vector space V :

Φ(fg)(m(v ∧ w)) = v ∧ wφ(fg)(v, w),

φ(fg)(v, w) ≡ [g(v, v)g(w,w)− g(v, w)2]−1/2.

}
(9.34)

These formulas are in exact agreement with the formulas of the introduction.
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John, F. 1938 The ultrahyperbolic differential equation with four independent variables. Duke

Math. J. 4, 300–322.
Mason, L. & Sparling, G. 1989 Nonlinear Schrödinger and Korteweg–de Vries are reductions of

self-dual Yang–Mills. Phys. Lett. A 137, 29–33.

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


3086 G. Sparling

Mason, L. & Sparling, G. 1992 Twistor correspondences for the soliton hierarchies. J. Geometry
Phys. 8, 243–271.

Muskhelishvili, N. 1968 Singular integral equations, 3rd edn. Moscow: Nauka.
Penrose, R. & Rindler, W. 1984 Spinors and space-time, vol. 1. Two-spinor calculus and rela-

tivistic fields. Cambridge University Press.
Penrose, R. & Rindler, W. 1986 Spinors and space-time, vol. 2. Spinor and twistor methods in

space-time geometry. Cambridge University Press.
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